
AD-A223 067 L FT C EI
ON1499i0

Final Report

Study of the Use of Ada in

Trusted Computing Bases (iCBs) to be Certified

at, or Below, the B3 Level

DISTRaLUTON STA3TE-ME!-M X
Alprzovad I'- puUc releasel

Prepared for:

National Computer Security Center
9800 Savage Road

Fort Meade, MD 20755

Prepared by:

Ada Applications and
Software Technology Group

IIT Research Institute
4600 Forbes Boulevard
Lanham, M 20706

April 1989

9o 06 /'

REPORT-DOCUMENTATION PAGE _F.__
?W m W* e a 1"~porI I W of k lfto , Is l@f r 10 W =haw "owns, W.Qft " t , F 1 . %a 0" VVI
""Mr~I~r V*Cf b~I~ '*'W~ @V6N* tu1VC .GIWWM~kft NM "Ipffft ftr w*1 tMft & t121S fodo

I*Med frn~ &Wd RVuyAYAe. OUrm of U"WI kd &*dis(. WN96M DC2S ----
11. AGENCY USE ONLY (LMWt Mw*Q 7 it. npEPO8mT . R.EPORT TYPE AM =4Ei COVEREDOj April i.989

4. TITLEAW$WJTITLE S. RMING NUWERS

Final Report: Study of the Use of Ada in Trusted Computer Bases

(TCBs) to be Certified at, or Below, the B3 Level

G.AWHIOR(S)

7. PEWOFAING ORGANIZATO KAW(s) AM ADORESS(ES) I. PE M ANIZATINREPORT NUMBER

Ada Applications and Software Technology Group

IIT Research Institute
4600 Forbes Blvd
Lanham, MD 20706

9. SPONSORI G MONITORG AGENCY NAIME(S) AND ADDRESS(ES) 10. SPONSOHOJMONORING AGENCY
REPORT NUMBER

National Computer Security Center

9800 Savage Road
Fort Meade, MD 20755

11. "UPLE&ENTARY NOTES

12. DS TrrI AVALALTy STATEMNT 12b. DISTRBION CODE

Unclassified; distribution unlimited

13. ABSTRACT (A kuv 0n 2A Yds)

14.SUBECTTEPS 'is. NUMBER OF FAGES
- -_ 277 -- - -- -

17T 5U t S IATION 1B SEC URTY C",ASiFCATION I 19.SECUTYCLSSIFICTION -20. LWIATIO OFABSTRACT
oF RPOR Or THIS PAM OFABSTRACT

[NC FIED UNCLASSIFIED UNCLASSIFIED

NSN M5 -1260-5500 -'tr970-m-8 Pv

pwby ANSI qt. 2*1

I - 29"1O

TABLE OF CONTENTS

1.0 INTR DXCTION .. i

2.0 RELATING T[E TCSEC MI0 TUE SOFIWARE DEVELOPMT POCESS 3

2.1 Background 3
2.2 Life Cycle Description .. 3
2.3 General Cnt ents on the Software Developwent Process 4
2.4 Format of the Mapping ... 6

3.0 PATIONALE FOR =h GUIDELINES 7

3 .i Bacdcgrounr....................... 7
3.2 Format of Rationale ... 7
3.3 Conclusions ... 7

4.0 USE OF THE GUIDELINES .. 8

4.1 Objective, Format and Scope of the Guidelirs 8
4.2 Limitations of the Language Constructs a

5.0 GLOSSARY OF TER-S ... 10

6.0 BIBLIOGRAiIfY .. 12

LIST OF APPENDIXES

APPENDIX

A A Mapping from the Trusted Computer System Evaluation
Criteria (TCSBC) to the Software Developmen~ t Process A-I

B Benefits of and Potential Deterrents to Using Ada in the
Software Development Process of Trusted Conputing Bases B-i

C Progrming Guidelines for Using Ada in the Software
Development of Trusted Computing Bases C-1

ey

A

A - . ' . ,,.> e

O is "', '6/o/4_

1. 0 INT~ROCCTI

This is the final report for the IStudy of the Use of Ada in Trusted Ciniting
Bases (TCBs) to be certified at, or below, the B3 Level." The objective of the
study was to produce guidelines for developing Ada software for TCBs. This
objective was addressed in a three-part process:

1) Mapping the Trusted CQwAter System Evaluation1 Criteria (T CSEC) to the
software develcpment process)

2) Identifying benefits of and potential deterrents to using Ada in the
software developent process of 1CB systs'

3) Prducing the c ddelin~s. (1 R) (--

The FajL- of the TEC to the -- ftwars d-velcpnent process was done to identify
precisely where and how application of the TSEC affected the software
development process. This task is described in Section 2.0. The mapping is
contained in Appendix A.

The identification of benefits of and potential deterrents to using Ada in TCBs
was based on knowing where and how TCS criteria affected software development.
These benefits and deterrents form the rationale for the guidelines. The
rationale is described in Section 3.0, and the listing of benefits and potential
deterrents is in Appendix B.

The guidelines produced are based on the rationale. The use of the guidelines is
discussed in Section 4.0, and the guidelines are presented in Appendix C. The
guidelines are intended to supplement developer-,elected guidelines for
implementing a TCB as well as general-purpose Ada pr-gr Lng guidelines.

Examples of Ada code are presented in Appendices B and C. In Appendix B, the
code examples typically iiltrate why the use of a specific Ada construct must
be limited in a particular fashion if that construct is to be used i a TCB. The
exanples in Appendix C illustrate how particular constructs can be used in the
development of a TCB.

Key terms that are used in this document are listed in Section 5.0, and the
bibliography is in Section 6.0. Because each appendix is intended to be a stand-
alone document, each also contains a key terms section and a bibliography.

This report does not imply that software alone is mfficient for ensuring
security in a TCB. As discussed in the papers "Secure cmauting: The Secure Ada
Target Approach," "LCking Comepters Securely," and "LOCix: On Iiplementing
Unix on the LOCK TCB," the security of a system cannot be insured with software
alone. Hardware is fundamentally important to TCB system security. This report
does not discuss hardware aspects of TCB systems. If the reader wishes to
investigate the hardware issues, he should consult the references cited above.
An abstract for each is presented in Appendix D.

This study is somhat similar to reports written on the development of the Army
Secure Operating System (ASOS).

1

The analysis of Ada for security performed by MWI in its development of the Army
Secure Cperating System (ASCS) has a different objective and viewpoint than that
of this study on the use of Ada in trusted c uuting bases (TC1s). Me TRW
analysis is documented in its final report, Multilevel Secure Ooeratin System
Final DevelR2ment Specification Rationale for the - Secure Creratngy
(_S___. The introduction of Q(apter 5, "Analysis of Ada for Security," states
the following:

'ljs study partitions the problem concerning Ada and security into the
following three categories:"

a. "Problems that arise from the Al requirement . . to do code
corresp nce, i.e., to show the correspondence between the
formal top level specifications and the source cxde that
Lip.lments these specifications."

b. "Problems that arise from Ada's need for an elaborate runtime
support library."

C. "Problems that arise from the (beyond AI) considerations of Ada
code verifications."

in contrast this study attempts to identify Ada software development guidelines
for creating trusted Ada code for TCBs. It does not address TCBs above the B3
class. Therefore it did not attempt to identify benefits, deterrents, and
guidelines with the criteria of Ada code correspondence with formal
specifications and formal Ada code verification (i.e., item a and c above). Nor
does this study use the criterion of minimizing the size of the runtine support
librar7 in the development of the security kernel (i.e., the reference monitor).
Unlike the ASOS this study makes no distinction between Ada constructs that are
allowed inside and outside of a TCB's security kernel.

Despite the differences between the two studies, they are not inconsistent with
each other. Rather they complement each other. Many sinilar guidelines appear
in the two studies. Pertinent ASOS guidelines have been borrowed and
incorporated into this report and are indicated as such.

2

2. 0 IaMATnr? THE TSB 70 WIE SOFTWARE I EFiW4E POC S

2. 1 BCkround

The first step in develcping Ada programming guidelines for software to which the
TEC is to be applied is to map the TCEC to the software development process.
This is to assure that the relationship between elements of the software
develcpment process and the specific TCSEC criteria are understood. Because this
mapping is language independent, Ada is not specifically mentioned in the
mapping. The details of the mapping are contained in Appendix A, "A Mapping fran
the Trusted Cmputer System Evaluation Criteria (11EC) to the Software
Developent Process."

The intent of this process is to detail what must be acomplished at each stage
of a software development to optimize the certification of a system using the
Department of Defense TCSEC. This cptimization is from two perspectives: one is
to ensure that the certification process meets the objective of understanding
what the software product will, and will not, do; the other is to reduce the
effort required to perform the certification process.

The intent of this section is to enable the reader to better use the mapping in
Appendix A. The first area discussed in this section is the life cycle model
used for the purposes of this report. The next section contains general canTents
on software development that are germane to developing software that is to be
certified using TCEC.

2.2 Life Cycle Descripti'm

Several models of the software development life cycle exist. These include the
waterfall model, articulated by DoD-STD-2167A Defense Systen Software
Development, and the incremental development model represented by Dr. Barry
Bioehm's spiral development model [Boehm 1988]. The primary difference between
these models is that the waterfall model assumes that one phase of developmnt is
completed prior to cm1sencement of the next phase, whereas incrmntal
developmnt iterates between phases and leads to partial system development with
increments to the system being preplanned.

Rather than focusing on the distinctions between these two, or other, development
models, this document assumes that systems pass through specific phases during
their development and operational life cycles. Regardless of whether these
phases a-n ared only once during a developnt or are entered iteratively, the
phases are adequately generic to be used here. The five phases used are the
following •

1. Requirements

3. Codixng

4. Testn

3

5. Support

These phases are used to structure the guidance as to what is to be acomplished
during software development to optimize the certification process. A checklist
of specific acxx-plishments is provided in Appendix A for each of these five
phases. The checklists are developed to provide maximum latitude on how each
item is to be impleimnted. This is to ensure that no development methodology is
either the required or the ip jed startiavd. Following each checklist is a
textual explanation of the item on the list.

2.3 General Qmmnts on the Software Develcpwnt Proces

This research effort focuses on software davelopment, which is an element of
system development. Although the resplts of this effort will be applicable to
system develpers, these results are specifically targeted to software
devel p rs. Verefore, terms that can be applied to system development or
software development should be interpreted from the software develcpwnt
perspective.

The software development process for certified systems will not vary
significantly from that for conventional systems. The process will be
accomplished through the cmpletion of various software development phases
including the requirements phase, the design phase, the coding phase, the testing
phase, and the support phase. Each of these phases, as detailed in Section 2.2,
progresses as in the development of conventional systems with scme additional
considerations. such as the use of defensive programming and defensive testing
approaches. These additional considerations will aid the software developer by
providing assistance either to assure that the goals of the TCSEC are met, to
implement the TCSEC criteria, or to enhance an existing system without requiring
excessive effort in re-certification. In particular, the design phase, the
coding phass, and the testing phase each require additioral consideration during
the software development of a TCB.

During the design phase of software develcpment, the software developer must use
a design methodology that is cmipatible with the requirements analysis. By
ensuring this compatibility, the software developer can ensure that there will be
traceability between the requirements and the design. This traceability will
demonstrate the ccmpleteness of the system software, which, in turn, guarantees
that all software requirments are addressed in the design.

In addition, during the design phase of the software development, the developer
needs to identify the various protection mechanism that will be implemaented
during development. Errors and amissions are the leading causes of security
breaches, and these can be ack-ressed by design reviews and code walkthroughs, for
exanple. Whatever protection mechanisms are to be iplemented, the
iizplementation detail; mist be determined during the design phase, and an
appropriate design must be established.

The coding phase of the software development of TCBs, differs from that of
conventional systems, primarily, in that the prograrner must be particularly
attentive to the use of coding starnards that prmote and do not compromise the

4

codes integrity, ncoding a wentionalsyst theprogramme attetstosatisfy the reureet as stated in the software reureet douetation.

Mhese requirements identify both the data to be handled by the system and the
operations required to handle the data. However, although a TCB's software
requirements document contains the same types of information as that for a
conventional system, the developer of a TCB mist also code in a manner so that
the operations are implemented so as not to compromise the data for which the TCB
is responsible. For example, if users of types X, Y, and Z should be allowed to
perform operation A, then when coding operation A, the software developer needs
to create the software to check the type of the user to ensure not only that it
is one of type X, Y, or Z, but also that it is not one of the other types of
users.

Dishonest and disgruntled enployees are major threats to developing secure
.systems. Manageent must make every effort to ensure that the prograiners are
adequately screened prior to their involvement with a trusted system. The extent
of the required background checks of the employees is a function of the
sensitivity of the system. The more sensitive the system, the more thorough the
background check must be. Also, monitoring of programmer attitudes during
developent is necessary to identify potential personnel problems early.
Although ,arioaus techniques exist to ensure the consistency between the design
and code of a system and to ensure the necessity and function of sections of
code, these tmiques are far from being perfected. Because there is no
technical ucumnism that provides assurance that malicious code nas not been
introduced, background checks and monitoring prgramer attitudes are necessary
ccmplements to software develcmient practices.

Finally, during the testing phase for certified systems, the testing process goes
ibeyond that for traditional software. In addition to testing to ensure that the
software sLports appropriate users and uses, the software must deny access to
inappropriate users and not support inappropriate uses. Safeguards against
accidental access to system data, against disclosing information about the
system's structure, and against providing information about system users must be
tested. The testing must assure that accidental or intentional system misuse
does not coupramise the security of the system, its data, or its users. Kncwing
that the testinq process for certified systems goes beyond that for conventional
systems, tlhe design of certified systems must support these testing needs. An
initial btep is to biform the system designers of the testing req''irments of the
ystm so that the design supports the testing of safeguards. in addition, test

hooks ray be designed into the system, where the purpose of the hooks is to
suport the testing process.

The .iitent of this project is to be unbiased toward the various Ada design
meithodologies; therefore, Ada design issues raised in the reports should aply to
all Ada design methodologies. Items included are various Ada facilities that aid
qocd software develcpment, such as the use of packages, bprograms, data types
(espeoly private types), etc., for in ormaticn hiding, modularity, and data
abstra-:tion.

5

2.4 Fbrmt of the Maping

7he format of A vxK ix A follows part I of th . Each M class, fran Cl
throh B3, is described. nTe tor ajor steadings of TcBs, Security policy,
Acxntability, Ass-ranre, and D Mnt.Iticn, am tlhn preented, with a synopsis
of the certification criteria for each. Each, UU-ading contains a checklist of
activities for each of the five piuaes of the software develcpment process.

6

3.1 B*X~qA

% first step in de ieloping Ada programing guidelines for software to which the
'TCSC is tz be. aplied was to map the TCZ to the softrdre develcpnent process.
The sperx was to develop the ratioeale on wlich the guidelines are to be based.
The rationale for the guidelines are the, beneits and potential deterrents of the
Ada programairq language relative to the esr of t TCSEC

One intenot of the rationale is to identify benefits of using Ada in the software
deve1q.cznt of 'fC s. Miese benefits Include Ada's a-sets in the application of
so und software engiJrmrirn principles, mi as data abstraction, inforation
hiding, mdularity, and localizatiai. Also iw-luded aqg the benefits are such
Ada c nstmcts as strong data typing, packages, msurograms, and tasks.

Arimther intent of the rationale is to identify and categorize potential
deterrents of using Ada in the softrare develcprent of TCBs. These include
shortcodrongs -,herant to prcgramning languages in general; shortccewiis unique to
the Ada language; and benefit-s of using tools in the developent of Ada language
software.

3.2 Fanmt of Pationle

The rationale for the guidelines are presented in App dix B, Benefits of and
Potential Deterrents to Using Ada in the Software Develorrent Process of Trusted
Caqmijut Bases. The rationale are presexdte ftrcm two perspectives. First, the
Mda language is considexed by focsing on the follmrair issues: (1) Benefits of
using Ada in developbxq TCB sy.tes, (2) Po tial deterrents to using Ada in
developing IB systxms, (3) Shortc=-wqs inherent to programing languages in
general in developing C systems, (4) Sh-tccirrjs unique to the Ada language in
developig IMC systens, (5) Benefits of using tools for developing Ada software
for WB systems. he rationale also presents these issues in the context of a
mappirxg of Ada usage to generalized TCB criteria. In particular, Class B3 is
used as a template for the genralized TCB criteria. Ada constructs and features
are identified that may be used to iplement TCB functions and features.

3.3 Cuwlusions

Because Ada was designed with features and constructs that promote recognized
sound software engineering principles more than other current high order
languages (HOs), it is well suited as the implementation language of TCBs.
Although Ada offers various specific benefits, the potential deterrents of using
Ada must be recognized and addressed. Although these potential problems were
identified with using various Ma features, this is not meant to implv that any
of the features should not be used. Ratler, the security of the TCB must not be
compromrised, as discussed in Appendix B, when any of the constructs and features
are used in the impla~lntation of the TCB.

7

4.0 USE OF 7MGUIEELNES

4.1 Cbjective, Fbrmt, and Scpe of the adddines

The guidelines presented in Appenix C, Programnrig Guidelines for Using Ada in
the Software Develomient of TCBs, bave a vexy specific focus. That focus is to
assist developers who are both experienced with the TCSEC ard knowledgeable of
Ada in merging these twc -technologies. The objective of the guidelines is
twofold:

1. Provide direction on the use of particular Ada constructs

2. Provide recawendations on how to irlewnt specific TCSEC criteria
with Ada.

Because of this dual Objective, the quidelines are presented using two
frameworks. The first presentation is a listng of tzbe chapters and sections of
The Reference Manual for the Ada Pro a'mib- L'_ e (IPM) (ASIA4I-SD-1815A-
1983), ard descriptions and guidelines, where appropriate, on the use of sections
for TCSEC software. The second presentation is a listing of the criteria of the
TCSEC, using B3 criteria as a template, with guidelines on how to iplemnt the
criteria using Ada.

The scope of these guidelines is specific to the TSEC and to the Ada proigramin
language. _he guidelines would be best used, therefore, in conjunction with
nternal cmpany standards for software engineering of IXCBs and for software
engineering with Ada. Modularization, for example, is a key software engineering
principle that should be incorporated into a system design. Specific TCSEC
criteria whose implementation is facilitated by modularization are noted. The
Ada structures that could be used for modularization to support the specific
criteria are listed.

These guidelines are, therefore, intended to cmplement other standards, not to
stand alone. Specifically, developer-selected guidelines for implementing a TCB
as well as general-purpose Ada programming guidelines should be supplemented
with, not supplanted by, these guidelines.

4.2 Limitaticos of the Ianguage Carntrcts;

The Ada language is rich and paerful in its prograrun constructs. With this
breadth of cnstructs canes the potential to write software that is difficult to
understand and control. Concurrency, for eyaiple, is necessary in several
applications. Concurrent software, however, is very difficult to test,
understand and predict. The Ada construct for implewenting concurrent processes
is the Ada task. TCSEC software imist be testable, understandable, ard
predictable. Also, many secure applications require concurrent processes. The
guidelines cannot rea)istical lv rr d that --- fo-r * Izvlm-, -, -. _

Instead, they list where tasks are appropriate and they disc.uss how tasks are to
be implemented to minirmize the potential reative effects of using tasks. The
guidelines do not recmmiend prohibiting the use of any construct but rather, in
some cases, reccmwnd limits on how constructs are to be used.

8

Constructs other than tws have both advantages and disadvantages. A typical
tradeoff is between mma.ty usage efficiency and execution time efficiency.
Dynamic memory structures, for exanple, are typically efficient from the memory
usage perspective but i efficient from the execution timing perspective. The
guidelines state the tradeoffs involved in using vrious constructs to facilitate
application-specific decisions.

9

5.0 KEY ERMS

Several key words appear throughout the text. of this document. These words have
specific meanings within the context of certified systems, and their definitions
are presented here.

These definitions are taken directly from the TCSEC:

Access - A specific type of interaction between a subject and an object that
results in the flow of information from one to the other.

Audit Trail. - A set of records that collectively provide documentary evidence of
processing used to aid in tracurq from original transactions forward to
related records and reports, and/or backwards from records and reports to
their cxponant source transactions.

Covert Charml - A cmmication channel that allows a process to transfer
information in a manner that violates the system's security policy.

Data - Information with a specific physical representation.

Discreticnary A C Itrol - A means of restricting access to objects based on
the identity of subjects and/or groups to which they belong. The controls
are discretionary in the sense that a subject with a certain access
permission is capable of passing that permission (perhaps indirectly) on to
any other subject (unless restrained by mardatory access control).

Mandatory Aamss Cuntrol - A means of restricting access to objects based on the
sensitivity (as represented by a label) of the information contained in the
objects and the formal authorization (i.e., clearance) of subjects to access
information of such sensitivity.

Cbject - A passive entity that contains or receive- information. Access to an
object potentially implies access to the information it contains. Examples
of objects are: records, blocks, pages, segments, files, directories,
directory trees, and programs, as well as bits, bytes, words, fields,
processors, video displays, keyboards, clocks, printers, network nodes, etc.

Sensitivity Iabel - A piece of information that represents the security level of
an object and that describes the sensitivity (e.g., classification) of the
data in the object. Sensitivity labels are used by the TCB as the basis for
mandatory access control decisions.

Subject - An active entity, generally in the form of a person, process, or device
that causes information to flow among objects or changes the system state.
Technically, a process/dvain pair.

Trusted Cxmputing Base (TCB) - The totality of protection mechanisms within a
computer system - including hardware firmware, and software - the
cambination of which is responsible for enforcing a security policy. A TCB
consists of one or more components that together enforce a unified security

10

policy over a product or system. 7he ability of a TCB to correctly enforce
a security policy depends solely on the mechniss within the TCB and on the
correct input bY system administrative persomel of parameters (e.g., a
user's clearance) related to the security pol.icy.

-Wkitional Terms

These terms are included because they appear frequently in the following text.

Pragma - A cpiler directive. That is, it "is used to convey information to
the cmpiler." According to the Ada language reference manual [ANSI/MIL-
STD-1815A-1983), the predefined pragmas (Refer to Annex B in this manual for
descriptions) "must be supported by every inplementation. In addition, an
implawntation may provide implementation-defined pragmas, which mst then
be described in Appendix I', i.e.,. the apendix on inplementation-deprdent
characteristics that the Ada compiler vendor mist provide in his Ada
language reference manual.

Security - The protection of calmter hardware and software frmi accidental or
malicious access, use, modification, destruction, or disclosure. Security
also pertains tu personnel, data, c=munications, and the physical
protection of coputer installations [IEEE 1983). Specifically, for the
purpcses of this report, security is defined by the criteria in the TCSEC,
i.e., a given security problem corresponds with a specific TCSEC criteria.

1i

6. 0 E&IIO AMF

Abrams, Marshall D., Podell, Harold J. , 1987. Tutorial Caputer and Network
eriv Washington, D. C.: IEEE Cuter Science Press.

Abrams, Marshall D., Poiell, Harold J., 1988. Recent DeveloaMnts in Network
, t 2906 Covington Road, Silver Spring, MD, 20910.: Omputer Educators Inc.

Aruie-s cn, Fic R. "Ada's Suitability for Trusted Ccmpter System" fromProceedns of the Symposium on Security andPrivacy, Oakland, California, 22-24

April, 1985.

Baker, T. P. 13 July 1988. Issues Involved in Developing Real-Time Ada Sst.
Departnent of Cmputer Science, Florida State University, Tallahasse,. FL: for U.
S. Arn 14, OMWADP.

Boebert, W. E., ain, R. Y., and Young, W. D., July 1985. "Secure Caiputing: The
Secure Ada Target Approach." Scientific Hofneywller, Vol. 6, No. 2.

Booch, Grady. i987A. Software Ccmgonents with Ada. Menlo Park, CA: The
Banjami/CQmings uiblishing CcOmpany, Inc.

Booch, Grady. 1987B. Software Engireering with Ada. 2nd ed. Menlo Park, CA: The
Benjami/Cmuings Publishing Campany, Inc.

Brill, Alan E., 1983. Building_ Controls Into Structured Systems. New York, N.
Y.: YOURID Press Inc.
Buhr, R. J. A., 1984. ystem Desicm with Ida. Englewood Cliffs, N. J.: Prentice-

Hall.

Chex.y, George W., 1984. Parallel P MWM rtr in ANSI Standard Ada. Reston,
Vizginia: Reston Publishing Cmcany, Inc.

Feldman, Michael B. 1985. Data Structures with Ada. Reston, Virginia: Reston
Publishing Cmpany, Imn.

Final Evaluation Report of SCOMP 23 September 1985. Secure Communications
Processor STOP Release 2,1.

Freeman, Petei. 1987. Tutorial: Soft-ware Reusability. Washington, D. C.: IEEE
Camputer Science Press.

Gasser, Morrie 1988. Building a Secre ter Syt . New Y ' N. Y.: Van
Nostrand Reinhold Caipany, Inc.
Gehani, Ua-ma:n. 1984. Ada Concurrent Programming. Englewoo Cliffs, N. J.:

Prentice-Hall Inc.

Gilpin, Geoff. 1986. Ada: A Guided Tr..vr aid Slutoria2. New York, N. Y.: Prentice
Hall Press.

12

Gooder , Jcmn B., "Excption Handling: Issues and a Pro Notation",
Comunications of the ACK, 18(12):683-696, December 1975.

Hadley, Sara, Hellwig, Frank G. of the National Security Agency, and Rowe,
Kenneth, CDR Vaurio, David of the National Ccmp ter Security Center. 1988. "A
Secure SDS Software Library," Proofe M, 11th National Catrpter Security
Conference, Baltimore, MD, October 17-20, 1987, National Institute of Standards
and Technology/National CQputer Security Center.

IEEE Stardard Glossary of Software Engiieering TerminologV. 18 February 1983.
(IEEE Std 729-1983).

Luckham, David C., Von Henke, Friendrich W., Krieg-Brueckner, Bernd, Owe, Olaf,
"ANN-A language for Annotating Ada Programs, Preliminary Reference Manual",
Technical Report No. 84-261, Program Analysis arnt Verification Group, Caipiter
System Laboratory, Stanford University, Stanford, CA 94305, July 1984.

Mungle, Jerry. 1988. Develoing Ada Sste. Technology Training Corporation's
seminar.

National Cmputer Security Center. 1985. Deparbent of Defense Trusted Cc~pute
System Evaluation Criteria. (DOD 5200.28-STD)

National Qrmputer Security Center. 1987. Trusted Network Interpretation of the
Trusted Computer System Evaluation Criteria.

Nissen, John and Wallis, Peter. 1984. Portability and Style in Ada. Cambridge,
Great Britain: Cambridge University Press.

Odyssey Research Associates, Inc., Toward Ada Verification, Preliminary Report
(Revised Preliminary Report), Odyssey Research Associates, Inc., 301A Harpis B
Dates Drive, Ithaca, NY 14850-1313, March 25, 1985.

Reference Manual for the Ada aoLramminc T-anguacre. 1983. ANSI/MIL-STD-1815A-1983,
17 February 1983.

Ross, D. T., Goodenough, J. B., and Irvine, C. A., 1975. "Software Engineering:
Process, Principles, and Goals," C

Saydjari, 0. S., Beckman, J. M., and Leaman, J. R. 1987. "LOCKing Computers
Securely," roceins, loth National Security Conference, Baltimore,
MD, September 21-24, 1987, National Bureau of Standards/National CaTputer
Security Center.

Shaffer, Mark of Honeywell, Ccmputing Technology Center, and Walsh, Geoff of R &11 ?iaanr1-: ^- 1I .', = - .
Procdi s, 11th National Cat-;er Security Conference, Baltimore, MD, October
17-20, 1987, National Institute of Standards and Technology/National Computer
Security Center.

13

Tracz, Will. 1988. Tu-torial: Software Peuse: EMein TegbMI Washimm, D.
C.: IEEE couapter Science Press.

Tripathi, Anand R., Yourg, William D., Good, Donald I., "A Preliminary Evaluation
of Verifiability in Ada", Prooeedirss of the ACM National Conference, Nahville,
TN, October 1980.

Trusted OC2 r System Security Regrents Guide for DoD Ap1ications. 1
Septerber 1987.

14

APPENDIX A

A Mapping
from the

Trusted Caputer System Evaluation Criteria (TCSEC)
to the

Software Development Process

Prepared for:

National Cwmputer Security Center
9800 Savage Road

Fort Meade, MD 20755

Prepared by:

Ada Applications and
Software Technology Group

IIT Research Institute
4600 Forbes Boulevard

Lanham, MD 20706

April 1989

A-i

A-2

APPNDIX A
TABIE OF ORIUM

1.0 Introduction ... A-5

1.1 Bacloground. A-5I1.2 Life Cycle Descrip ion i [i [[[[[........ A-5

1.3 Ney Termns o.. A-6
1.4 Format of This Appendix ... A-8

2.0 Division C: Discretionary Protection o.. A-9

2.1 Class Cl: Discretioary Security Protection A-9
2.!. 1 Security Policy o......6......0...........0................. A-9
2.1i.2 Acountability o........................... A-11

2.1.3 Assurance A.................A-12
2.1.4 Documentation ... A-14

2.2 Class C2: Controlled Access Proteztion A-16
2.2.1 Security Policy 0.0 A-16
2.2.2 Accountability o................... o.................... A-18
2o2.3 Assurance A-20
2.2.4 Documentation A-23

3.0 Division B: Mandatory Protection o A-25

3.1 Class Bl: Labeled Security Protection A-25
3.1.1 Security Policy A-25
3.1.2 Accountabilit.y ... A-31
3.1.3 Assurance A-33
3,1.4 Documentation A-37

2 . 2 Class B2. Structured Prctection A-39
3.2.1 Security Policy ... A-39
3.2.2 Accountability A-46
3.2.3 Assurance A-49
3.2.4 Documentation A-55

3.3 Class B3: Security Domains......................... A-57
3 3.1 Security Policy A-57
3.3.2 Acomutability A-64
3.3.3 Assurac A-67

. . -t LA.%.4,AU UL. Qt. JA A.. e. . . &. 1 1

4.0 References A-76

A-3

A-4

1. 0 T-IM1XN

The intent of this apeudix is to detail what mist be accrpished at each stage
of a softwore develcpment to optimize the certification of a system using the
Department of Defe=e TC C. mis optimization is from two perspectives: one is
to ensure tht t.e cemrtification process meets the objective of understanding
what the software product will, and will not, do; the other is to reduce the
effort r-.qaired to perform the certification process. Because this rapping is
language independent, Ada is not mentioned in the body of the this Appendix.

This appendix is reant to stand alone; however, a strong familiarity with the

TCSEC is iYred to use the document,

1.2 Life Q f=ripicn

Several models of the software develcpnt life cycle exist. These include the
waterfall model, articulated by DoD-STD-2167A Defense System Software
Development, and the incremental dsveloltment -model represented by Dr. Barry
Boehm's spiral developmnt model [Boeki, 1988). The primary difference between
these models is that the waterfall model assumes that one phase of development is
ccmpleted prior to ccmmncement of the next phase, whereas incremental
development iterates between phases and leads to partial system development with
increments to the system being preplanned.

Rather than focusing on the distinctions betwen these two, or other, development
models, this document assumes that systems pass through specific phases during
their develcpment and operational life cycles, Regardless of whether these
phases are entered only once durf-r a development or are entered iteratively, the
phases are adequately generic to be used to structure this report. The five
pases used here are the following:

1. Requirements

2. Design

3. Coding

4. Testing

5. Sup,ort

These phases are used to structure the guidance as to what is to be accomplished
during software development to optimize the certification process. A checklist
of specific accomplishments is provided for each of these five phases. The

inplented. This is to ensure that no development methodology is either the
required or the inplied standard. Followig each checklist is a textual
explanation of the item.,s on the list.

A-5

1.3 Key Terms

Several key words appear throughcut the text of this appendix. These words have
specific meanings within the context of certified systems and their definitions
are presented hee. These definitions are taken directly fram the TCSEC:

Access - A specific type of interaction between a subject and an object that
results in the flow of information from one to the other.

Audit Trail - A set of records that collectively provide docuenta evidence of
processing used to aid in txzcing from original tiansactions forward to
related records and reports, and/or backwards fron records and reports
to their cxment source transactions.

overt Charml - A cumaunication channel that alls a process to transfer
information in a manner that violates the system's security policy.

Data - Information with a specific physical representation.

Discreticnary kxe Otroi - A means of restricting access to objects based on
the identity of subjects and/or groups to which they belor. Mhe
controls are discretionary in the sense that a --ubject with a certain
access permission is capable of passing that permission (perhaps
indirectly) on to any other subject (unless restraired by rndatory
access control).

Mandatory Accss ontrol - A mean of restricting access to objects based on the
sensitivity (as represented by a label) of the information contairnd in
the bjects and the formal authorization (i.e., clearance) of m)bjectz
to access information of such sensitivity.

Object - A passive entity that contains or receives infonrmtion. Ac ss to an
object potentially implies access to the information it contains.
Eamples of objects are: records, blocks, pages, segments, files,
directories, directory trees, and pr.gams, as well as bits, bytes,
words, fields, processors, video displays, keyboards, clocks, printers,
network nodes, etc.

Sensitivity Iabel - A piece of information that represents the security level of
an object and that describes the sensitivity (e.g., classification) of
the data in the object. Serisitivity labels are used by the 2CR as the
basis for mandatory access control decisions.

Subject- An active entity, gener-lly in the form of a person, process, or device
that causes information to flow among objects or changes the system
state. Technically, a process/dmain pair.

Ttusted Ccimutliq Ftse (2CBR) - The totality of protection mechanism within a
ca:)uter systm - including hardware f irrare, and -oftware -- the
caobination of which is responsible for enforcing a security policy. A
TCB consists of one or more components that together enforce a unified
security policy over a product or system. The ability of a 'LCB to

A-6

correctly enforoe a security policy depends solely on the medhanism
within the MB and on the correct irput by system administrative
pers"=el of parameters (e.g., a user's clearance) related to the
security policy.

Additional Term

7This term is included because it appears frequently in the folluing text.

Security - Ihe protection of camplter hardware and software frcm accidental or
malicicus access, use, modification, destruction, or disclosure.
Swarity also pertains to personnel, data, cmmunications, and the
physical protection of computer installations [IEEE 1983).
Specifically, for the purposes of this report, security is defined by
the criteria in the TCSEC, i.e., a given security problem corresponds
with a specific TCSEC criteria.

A-7

1.4 Fornt of Miis Apperdix

The format of this appendix follows the format of Part I of the TCSEC. Each
Class of TCB is described through a direct quotation of the description from the
TCSFC. After this description, each of the four subheadings, Security Policy,
Accountability, Assuranece, and Documentation, follows with its individual
subheadings, such as Discretionary Access Control. For each of these, a synopsis
of the certification criteria is presented, followed by a checklist of activities
to be performed at each of the five ihases of the software development life
cycle. In those instances where one or more of the five phases is not presented,
no special consideration needs to be made during this phase of the development.
In addition, the decklists for the various subeadins are upwardly ccapatible,
i.e., Requirements for Discretionary Access Control for a class Cl TCB also apply
to the Requirements for D., -retionary Access Control for a class C2 TCB. When
these checklist items are initially introduced, they are presented in bold-
unglerli ad a textual explanaticn for each is given. W'hen Ithey are repeated,
they are prefixed by "(X):," where X is the Class of TCB in which they were
introduced checklist items preceded by an "o" cae directly from the TCSEC; those
preceded by a "-" were identified by this research.

Bold-Underline is used to irlicate certification criteria and checklist items not
contained in a lower class or changes and additions to already defined
certification criteria or checklist items. Where there are no bold-underline,
information has ben carried over frou lower classes without addition or
modification. adso, the paragraph numbers from this document correspond exactly
to those in the TCSEC to assist the user of this document in tracing a
requirement back to its origin in the 7CSEC.

A-8

APPENDIX A
Division C, Class Cl

2.0 DIVISICK C: DISC"MIL*W PRUIEMC1

2.1 CASS CI: DISCEMMIARY SERLIT PRU VICR

"Th Trusted Cmiputing Base (TCB) of a class Cl system nominally satisfies the
discretionary security requirements by providing separation of users and data.
It incorporates scme form of credible controls capable of enforcing access
limitations on an individual basis, i.e., ostensibly suitable for allowing users
to be able to protect project or private information and to keep other users from
accidentally reading or destroying their data. The class C1 environment is
.)qpected to be one of cooperating users processing data at the same level(s) of

sensitivity."

2.1.1 Security Policy

2.1.1.1 Discreticnary Access Ocmtrol

o TMB rhall define and control acess betwee named users and named
biects in the ADP svt

o Enforoement matanim shall allow us xs to specify and control sharir
of those obiects by named individuals, or defined qropsW, or both

- Identify all types of users for the system, including individual users
and grops of users

- Identify all tyes of objects (e.Q.. files and progran) in thesyst
- Identify the level of sesitivity for the data within the
- Describe all possible interacticns betwn the users and the data
- Identify the criteria for d the need of a particular user to

acess a particular biect

To properly develop txie Discretionary Access Control Requirements for a
Class Cl TCB, the system developer must completely evaluate the system to be
developed. This evaluation must identify all of the types of user objects
that arx. to be handled by the system. In addition, all interactions between
these users and objects need to be described. Once this information has
been established, the security policy requirements for each type of
interaction will be determined, and appropriate system requirements will be
developed to reflect this determination.

Consider the case of the developmient of a secure database system. In
particular, consider the user of type data entry person, and the data of
type salary information. This data entry person may be allowed to enter the
erployee name and identification number; however, the annual salary
associated with that employee would be sensitive information, and as such
would not be made available to the data entry person. In this instance, the

A-9

APPENDIX A
Division C, Class C1

security policy requirements for this type of interaction would reflect

this.

Design:

- Establish a method for ua~i inj the enforcemnt mechanism (e.g.,
selfr pDpublic camtrols. aess cmntrol lists)

- Establish a method of cantrollin access to objects within the domain
of tin 7M

- ERtablish a criteria for cetermiirxn the need of a particular user to
agess a pgtLcuar p~c.
Establish a mecanism for id tIfi* users

The design of the discretionary access control for a Class Cl TCB must
satisfy the requirements stated above. In particular, a method for
enforcing the access control irst be established. In addition, a mechanism
for controlling access to objects within the domain of the TCB needs to be
established, and the design needs to include a means of identifying users.
For exanple, the discretionary access design may use passwords to control
the access of users to objects in the TCE. Only those users on a given
access list would be informed of the password required to gain access to
data to which the list corresponds.

coding:

- Use a defensive prociaing methodolcgy, including hooks to aid tsin
and mintenange

The coding must implement the design of the discretionary access control of
the Class Cl TCB. Coding should be performed defensively, using modular
structured programmng, as discuussed in the introduction. The hooks
typically are prudently placed debug statements that provide information on
the operation of the system. A convenient means should be provided to turn
the debug statements on and off.

- Re-test system uMn cupmleticn of modification
- Erure that enfo et mechanism access cantrol lists are maintained,

e.g., addixg re users to the access control lists, and removi= users
from the access control lists who no lcger reunre access to the

Support for discretionary access control involves the maintenance of the
system such as adding enhancements to it or removing obsolete features. The
support includes the maintenance of the access control list -y adding new
users and removing users who no longer require access to the system.

A-10

APPENDIX A
Division C, Class Ci

2.1.2 Akxountability

2.1.2.1 Identification and Authenticatin

o TM8 shall require users to identify themselves to it before bejinni
to perform any other actions that the TM is enpected to mediate

o TM shall use a rotect to autheticate a user's identity
o UM &.&U rotect " "it data so that it cannot be accessed by

any unauorized user

Reqieens:

- Identify all actions to be mediated by the TM, includig access to
authentication data

- Define a stardard format for authentication data
- Determine a method for identifing users

The major criterion to be met when establishing the requirements for
Identification and Authentication of a Class C1 TCB is that users must
identify themselves to the TCB before beginning to perform any actions to be
mediated by the TCB. To accurately develop requirements for this, the
developer needs to first establish a method for identifying users, and
second establish a list of all actions to be mediated by the TCB.

The method for identifying users would vary depending upon the number of
users requiring access or the sensitivity of the data within the system.
For example, if the system contained very little private information, the
developer -may decide to iiplement somvewhat trivial identification procedures
for those actions that access the non-private information and nore
restrictive identification procedures for those actions that access the
private information. If all of the information were private, restrictive
identification procedures would be used in all cases. Regardless of the
identification procedures used, authentication data would be used to verify
the user's identify. The format for this authentication data (e.g., a
password and a social security number) will need to be determined at this
time.

Design:

- Establish a protected mecanism for idtification and authentication
of users

- Establish a medanism for creatin and maintainincr authentication data

The Design of the Identification and Authentication aspect of a Class C1 TCB

must be responsible for the actual identification of the users. To do this,

A-I1

APPENDIX A
Division C, Class Cl

a mechanism for identifying the users and authenticating their
identification must be designed. Rurthermore, a mechanism for creating,
maintaining, and protecting the authentication data needs to be designed to
guarantee tUit the data is properly maintained and is tanper-proof. This
mechanism will be protected by the TCB, so that no user can accidentally
access it and read, modify, or delete important authentication data.

2.1.3 Asurarr

2.1.3.1 peratioal Assurance

2.1.3.11 System Aritzecture

o TCB shall maintain a dcmain for its own exevution that protects it frm
external interfere or

o Resources crntrolled bv the TCB may be a defined subset of the subects
and iects in the ADP sys t m

- Identify all resoures to be protected by the M inclrlu the TCB
code and data strutures

To develop the requirements for the System Architecture in a Class Cl TCB,
all resources that the TCB must protect need to be identified. These
resources include the code, data structures, and files in the TCB's domain.
Protecting the resources will serve to isolate them from external
interference and tampering, and thus ensure their integrity. Resources may
require various methods of protection.

Design:

- Establish a mode for protectinz each resource within the TCB

The System Architecture design for a Class Cl TCB must establish a mode for
protecting each resource within the TCB. Such a mode may use security
mechanisms, such as passwords, to restrict access to resources like its
code. Hardware security mechanisms may be used to provide protection for
some resources (e.g., descriptors that identify the security attributes of
the subject and object, and gates that control access to resources).

A-12

APPENDIX A
Division C, Class C1

2.1.3.1.2 System Integrity

o Harre and/or software features shall be provided that can be used to
periodically validate the correct operatian of the cn-site hardware and
firmware elements of the TCB

- Ideqtif hartware ard firmware elements of the TIR to be validated
- Detexmine validation criteria for testing each element of the 1XM
- Determine the avorcxnriate interval at wvhidi validation of the

hardware/firmware should take tlace

To correctly detail requirements for System Integrity of a Class C1 TCB, the
system developer must identify all on-site hardware and finmware elements of
the TCB. In addition, the criteria for determining validity of these
elements need to be established. When establishing the validation
criterion, each hardware and firmware element needs to be considered
individually, rather than by type of element, because the validation of
these elements is dependent upon their operation environment. As an example
of this, consider a tape drive on the system. If this tape drive were used
to backup a file containing non-sensitive data, its validation criteria
would be less strict than those developed if it were used to back up
sensitive data; however, the type of tape drive would be the same in both
instances.

Design:

- Establish a method for testing each critericn for each element of theTQB

As described in the System Integrity Requ.rements, it is important to
consider not only the type of the hardware being validated, but also its
place in the operation of the TCB. Because of this, it is necessary, during
the design phase, for the developer to completely understand each validation
criteria for each piece of hardware and to design each test individually.
While it is true that some tests may be able to be used for evaluating
similar criteria on similar pieces of hardware, the criteria need to be
evaluated separately and tests ceated separately to ensure that, once
developed, they are complete and test exactly what needs to be validated.

A-13

APPENDIX A
Division C, Class C1

2.1.3.2 Life-Cycle Assurance

2.1.3.2.1 Secrity Testing

o Security eanisms the ADP system sbal1 be tested and found to work
as claimed in the system &domnatign

o Testing shall be dam to assure that there are no cbvious ways for an
unaudxrized user to bypass or otherwise defeat the security protection
meovinism of the UB

Requireimrxts.

- Identif'y security protection ednims of the TCB to be tested

The performance of security testing in a Class Cl TCB ensures the integrity
of the system's security. The system documentation serves as the basis for
identifying the security protection mechanisms (e.g., discretionary access
control) to be tested. To perform this testing, all security protection
mechanisms with the TCB need to be identified.

Design:

- Establish a means of testinm ead security protection mechanism

The design of the security testing features for a Class C^ TCB must satisfy
the requirement stated above. This is confirmed by demonstrating that the
system's security complies with the system documentation. This design needs
to provide a means of testing each security protection mechanism for which
it is responsible. This may be accomplished by examining the data that
results from the execution of diagnostic testing.

Use prxently placed deObx statements to allow the tester to monitor
the oeration of the security meca

The coding nirst implement the design of security testing features of the
Class Cl EC. In particular, the diagnostics may be derived from prudently
placed debug statements to allow the tester to monitor the operation of the
system's security.

2.1.4 Documentation

Documentation is an important part of the software development process. It
aids users who are not familiar with the system in learning how to use the
system correctly. It aids support programmers in testing the system to

A-14

APPENDIX A
Division C, Class Cl

ensure that a modification has not had a negative inpact on the system.
This is especially important when developing a TCB, because the security of
the system is of the utmost importance. While this is true, no special
consideration needs to be given to the development of the documentation for
a TCB. The documentation must be developed to meet all requirements set
forth in the TCSEC and must be cmplete and up-to-date; however, this is not
particular to this development and requires no further discussion.

2.1.4.1 Se&mirity F-atres User's Guide

o Simle ,mmary. dhater, or mnual in user docune taticn shall describe
the protection mechanis provided by the T'B, guidelines on their use,
and how they interact with one another

2.1.4.2 Trusted Facility Mamal

o Martal addressed to the ADP system administrator shall present cautions
about furcticms and privileces that should be controlled when running a
secure facility

2.1.4.3 Test Dxcnentaticn

o System developer shall provide to the evaluators a document that
describes the test plan, test procedures that show how the security
i±dani~si iwre tested, and results of the security mecianisms'
functinmal

2.1.4.4 Design Documentaticn

o Documentation shall be available that provides a description of the
manufacturer's rhilosorhv of protection and an explanation of how this
philosophy is translated intc the rTR

- If the CB is compsed of distinct modules, the interfaces between
these modules shall be described

A-15

APPENDIX A
Division C, Class C2

2.2 CLASS C2: CMIM1ED ACCSS PROTECNICK

"Systems in this class enforce a more finely grained discretionary access control
than Cl systems, making users individually accountable for their actions through
login procedures, auditing of security-relevant events, and resource isolation."

2.2.1 Security Policy

2.2.1.1 Discretiorary Access Control

o TCB shall define and control access between named users and nmed
objects in the ADP system

o Enforcement mechanism shall allow users to specify and control sharing
of those objects by named individuals or defined groups of individuals,
or by both, and shall provide controls to limit propacatio of access

o Discreticzar c e control medmism shall, either by explicit user
action or default, provide that giects are protected frm unauthorized
access

o Access cotrols shall be capable of including or excludinr access to
the aranularity of a single user

o Accss permission to an gb-iect by users not already possessin accss
permission s1hall only be assicued by authorized users

Rquremnts:

(Cl) :

- Identify all types of users for the system, including individual users
and groups of users

- Identify all types of objects (e.g., files and programs) in the system
- Identify the level of sensitivity for the data within the system
- Describe all possible interactions between the users and the data
- Identify the criteria for determining the need of a particular user to

access a particular object
- Identify specific individuals to be included in each qroup of users

As can be seen in the description of a Class C2 TCB, this class requires a
more finely grained discretionary access control than the Class Cl. This

must be included in a group and then identified during the requirements
phase of the software development. In Class C2, the individual is
accountable for his own actions even though he may be operating as a member
of a group; therefore, it is still important to be able to identify the
individual.

A-16

APPENDIX A
Division C, Class C2

Design:

(Cl):

- Establish a method for maintaining the enforcement mechanism (e.g.,
self/group/public controls, access control lists)

- Establish a method of controlling access to objects within the domain
of the TCB

- Establish criteria for determining the need of a particular user to
access a particular object

- Establish a mechanism for identifying users

(Cl):

- Use a defensive programing methodology, including hooks, to aid
testing and maintenance

(Cl):

- Re-test system upon completion of modification
- Ensure that enforcement mechanism access control lists are maintained,

e.g., adding new users to the access control lists and removing users
from the access control lists who no longer require access to the
system

2.2.1.2 Cbject Rause

o TCB shall assure that when a storage object is initially assiqne,
allocated, or reallocated to a subject from the WB's pool of unused
storaQe objects, the object cnitains no data for which the subject is
not authorized

Requeens:
- "- -- "L.Y a±± S±LL±- X1 1-- "1 WIL"L AI C .. L Lidily

assiqned, allocated, or reallocated from the =B's pool of unused
storage jes
I&enti-fy methods for reanovin data from objects

A-17

APPENDIX A
Division C, Class C2

Various types of storage objects controlled by a Class C2 TCB are .;ubject to
being reused; therefore, they need to be identified and the situations that
would result in their reuse need to be identified. These situations include
the initial assignment to, allocation to, and reallocation fra the TCB's
pool of unused storage objects.

In addition to identifying all situations in which an object could
potentially be reused, the various methods for removing unauthorized data
from tb-_,hc objects re to be identified. Once the possible methodz for the
removal of data have been identified, they can be evaluated against the
other system requirements, such as those for system performance. In this
manner, the best data removal method can be chosen and implemented during
the design phase.

Design:

- EBtablish a method for determinlix authorization of subject for object
- Establish a method for reMM data for which subject is not

authorized

A mechanism for managing storage object reuse must be established. Its
design must satisfy the requirements stated above, allow the determination
of authorization of subjects for objects, and facilitate the removal of
unauthorized data.

2.2.2 Accountability

2.2.2.1 Identification and Authentication

(Cl):

o TCB shall require users to identify themselves to it before beginning
to perform any other actions that the TCB is expected to mediate

o TCB shall use a protected mechanism to authenticate the user's identity
o TCB shall protect authentication data so that it cannot be accessed by

any unauthorized user
o TCB shall be able to enforce individual accountability by Providing the

cpabilit to urimiely, idegti ,each individual ADP systm user
o TM shall provide the capability of associating the individual identity

with all auditable actions taken by that individual

A-18

APPEDIX A
Division C, Class C2

Reqirements:

(Cl):

- Identify all actions to be mediated by the TCB, including access to
authentication data

- Define a standard format for authentication data
- Determine a method for identifying users

oesign:

(Cl):

- Establish a mechanism for identifying and authenticating users
- Establish a mechanism for creating and maintaining authentication data
- Establish a mecanism for associating user identity with user actions

Under Class Cl, the user must identify himself to the TCB prior to being
allowed to access any actions mediated by it. This requirement is enforced
in a C2 TCB, with the additional stipulation that all auditable actions
performed by that user can be associated with that user. To accoplish
this, some type of mechanism for associating the user' s identity with the
actions taken by that user must be available. To do this, during the design
phase of Identification and Authentication, the mechanism will need to be
detailed. As an exanple, the method chosen to identify the user could be to
require him to enter his Social Security N, mber (SSN). The mechanism for
associating the user identity with the user actions could create files
containing SSN and actions for each auditable function mediated by the TCB.
These files could be examined at a later time to check to see that all
accesses to that function were performed in good faith and that no user
accidentally read, modified, or deleted information which should not have
been read, modified, or deleted by that user.

2.2.2.2 Audit

o TM shall be able to create, maintain, and protect fram modification or
unautrize acess or destrxicin an audit trail of accesses to the
ci ects it Doet

o Audit data shall be protected by the I[M so that read access to it is

o IKM shall be able to reord: use of idetification and authentication
mechanisms, introcxiacn of objects into a user's address space,
deletion of ojects, actions taken by oamiter operators and sys te
administrators and/or system security officers, and other securitv
relevant events.

A-19

APPENDIX A
Division C, Class C2

o For each recorded event, the audit record shall identify: date and
time of the event, user. type of event. and success cr failure of the
event. Fbr identification arxl autheatication events, the audit record
shall include oriain of reuest (terminal ID). For events that
introduce obiect into a user's addre space and for obiect deletion
eve ts, the audit record shall include the name of the gbJect.

o AJF sys-t administrator shall be able to selectively audit the actions
of any one or more users based on individual identt7

Pauiemnts:

- Identify all objects to be motected by the T
- Determine coiilete r for Audit Function

To correctly determine the requirements for Class C2 TCB auditing functions,
all objects that need to be protected by the TCB must be identified, and the
means for auditing them must be determined. The use of identification and
authentication data and the introduction of objects into a user's address
space must be included. The following items must be monitored in order to
audit each recorded event: the date and time of the event, user, type of
event, and success or failure of the event.

Design:

- Establish a mechanism for xoeration of the Audit Function

The design of the auditing functions of a Class C2 TCB must satisfy the
requirements stated above. To accmplish this, the design must include a
mechanism for the operation of the audit functions. The audit record should
be maintained on-line, and it shoul d also be able to be output in a human-
readable form.

2.2.3 Assurance

2.2.3.1 0peraticoial Assurance

2.2.3.1.1 System Architecture

(Cl):

o TCB shall maintain a domain for its own execution that protects it from
external interference or tanqering

o Resources controlled by the TCB may be a defined subset of the subjects
and objects in the ADP system

A-20

APPENDIX A
Division C, Class C2

o TM3 shall isolate the resmuces to be protected so that they are

sbiect to tl acxoes crtro:I and aixiitiM rOzuirg LS-

Paquicremnts:

(Cl):

- Identify all resources to be protected by the TCB, including the TCB

code andA date structures

Design:

(Cl):

- Establish a mode for protecting each resource within the TCB
- Establish a method of isolating resources to be protected by the 3

The design of the system architecture of a Class C2 TCB must satisfy the
reuirent stated above. In addition, the design mist include a method for
isolating resources to be protected by the TCB. The method may use a
riechanism such as passwords for individuals or groups of individuals to
further ensure the security of the resources by having their access
controlled and audited. Thus, it provides additional protection of the
resources from being accessed by unauthorized subjects.

2.2.3.1.2 System Integzity

(Cl):

o Hardware and/or software features shall be provided that can be used to
periodically validate the correct operation of the on-site hardware and
firriare elements of the TCB

Pqurennts.

(Cl):

- Identify hardware and firnware elements of the TCB to be validated

- Determine the appropriate interval at which validation of the
hardware/f inmare should take place

A-21

APPENDIX A
Division C, Class C2

Design:

(Ci):

- Establish a method for testing each criterion for each element of the
TCB

2.2.3.2 life-Cycle Assuranoe

2.2.3.2.1 Security T-

(Cl):

o Security mechanisms of the ADP system shall be tested and found to work
as claimed in the system documentation

o Testing shall be done to assure that there are no obvious ways for an
unauthorized user to bypass or otherwise defeat the security protection
mechanisms of the TCB

o Testing shall include a search for cbvious flaws that wuxld allow
violation of resource isolaticn or that w-lld pemit unauthorized
acxess to audit or authentication data

Reqiemnts:

(Cl):

- Identify security protection mednisns of the T B to be tested

Design:

(Ci):

- Establish a means of testing each security protection mechanism

(Cl):

- Use prudently placed debug statements to allow the tester to nonitor
operation of the security mechanisms

A-22

APPENDIX A
Division C, Class C2

2.2.4 Documentation

(Cl):

Documentation is an inportant part of the software development process. It
aid:; users who are not familiar with the system in learning how to use the
system correctly. It aids support proramnuxs in testing the system to
ensure that a moaification has not had a negative inpact on the system.
This is especially important when developing a TCB. because the security of
the system is of the utmost importance. While this is true, no special
consideration needs to be given to the development of the docmentation for
a TUB. The documentation must be developed to meet all requirements set
forth in the TCSEC, and must be ccmplete and up--to-date; however, this is
not particular to this development and requires no further discussion.

2.2.4.1 Security Features User's Guide

(Cl):

o Single summar, chapter, or manual in user documentation shall describe
the protection mechanism provided by the TCB, guidelines on their use,
and how they interact with one another

2.2.4.2 Trusted Facility Manual

(Cl):

Manual addressed to the ADP system administrator shall present cautions
about functions and privileges that should be controlled when running a
secure facility.

o Uhe procedures for exainin and maintaini the audit files, as yell
as the detailed audit record structure for each type of audit event,
shall be qiven.

2.2.4.3 Test Documentation

(Cl):

o System developer shall provide to the ealuators a document that
describes the test plan, test procedures that show how the security
mechanisms were tested, and results of the security mechanisms'

A-23

APPENDIX A
Division C, Class C2

2.2.4.4 Design Iaxmtation

(Cl):

o Docmnentation shall be available that provides a description of the
manufacturer's philosophy of protection and an explanation of how this
philosophy is translated into the TCB

o If the TCB is ccmposed of distinct modules, the interfaces between
Mhese s shall be described

A-24

APPED. A
Division B, Class BI

3.0 DIVISICN B: FANDTOY IIMED ION

3.1 CLASS BI: TEKLED SEJI PRIE=CION

"Class B1 systems require all the features requixed for Class C2. In addition,
an informal statement of the security policy model, data labeling, and mandatory
access control over named subjects and objects must be present. The capability
must exist for accurately label ing exported information. Any flaus identified by
testing must be removed."

3.1.1 Security Policy

3.1.1.1 Discretionary Acess Control

(Cl):

o TICB shall define and control access between named users and named
objects in the ADP system

o Enforcement mechanism shall allow users to specify and control sharing
of those objects by named individuals or defined groups of individuals,
or both, and shall provide controls to limit propagation of access
rights.

(C2):

o Discretionary access control mechanism shall, either by explicit user
action or default, provide that objects are protected from unauthorized
access

o Access controls shall be capable of including or excluding access to
the granularity of a single user

o Access permission to an object by users not already possessing access
permission shall only be assigned by authorized users

Paquiements.

(Cl):

- Identify all types of users for the system, including individual users
and groups of users

- Identify all types of objects (e.g., files and programs) in the system
- identify the level uf -:i-ex siLivi'Ly 'LX.£ Ue data -witi -1. tu yst e
- Describe all possible interactions between the users and the data
- Identify the criteria for determining the need of a particular user to

access a particular object

A-25

APPENDIX A
Division B, Class BI

(C2):

- Identify specific individuals to be included in each group of users

Design:

(Cl):

- Establish a method for maintaining the enfornement mechanism (e.g.,
self/group/public controls, access control lists)

- Es+ablish a method of controlling access to objects within tie doimain
of the TCB

- Establish criteria for determining the need of a particular user to
access a particular object

- Establish a mechanism for identifying users

oding:

(Cl):

- Use a defensive programing methodology, including hooks, to aid

esting and maintenance

Support:

(Cl):

- Re-test system upon completion of modification
- Ensure that enforcement mechanism access control lists are maintained,

e.g., adding new users to the access control lists and removing users
from the access control lists who no longer require access to the
system

3.1.1.2 ObjectReuse

(C2):

o TCB shall ensure that when a storage object is initially assigned,
allocated, or reallocated to a subject from the TCB's pool of unused
storage objects, the object contains no data for which the subject is

A-26

APPENDMX A

Division B, Class Bi

Requiemnts:

(C2):

- Identify all situations in which a storage object is initially
assigned, allocated, or reallocated from the TCB's pool of unused
storage objects

- Identify methods for removing data from objects

Design:

(C2):

- Establish a method for determining authorization of subject for object
- Establish a method for removing data for which subject is not

authorized

3.1.1.3 labels

o Seritivity labels associated rith each subject and storaQe qject
under its coritrol shall be mintaine by the TCB

o rffese labels shall be used as the basis for mandatory access control
decisions

o To igport non-labeled data, the TM shall request and receive from an
authorized user the security level of the data, and all such actions
shall be otditable by the 7B

Requirements:

- Identify all subjects and storare objects under the control of the TCB
- Define a policy for associating sensitivity labels with each subiect

and starage object onitrolled by the TES. ingluiinM the inport of non-
labeled data and the export of labeled data

Sensitivity labels, as required for a Class Bl TCB, must be associated with
each subject and storage object under control of the TCB. The labels shall
be used as the basis for access control decisions; therefore, the subjects
and storage objects requiring sensitivity labels must be identified, and a
policy must be defined for associating the labels with each subject and
storage object. This includes the importing of non-labeled data and the

and protected by the TCB are personnel records and inventory data.

A-27

APPENDIX A
Division B, Class B1

Design:

- Establish a mechanism far implementing and manai the sensitivity
labels

- Establish an interacticn c bete sensitivity 1a4blin and the audit
furiatick

- Establish a medhani n for bangirM and =anitorinij the sensitivity
desiination

The design of the mechanism to handle sensitivity labels mist satisf , the
requirements stated above. To accomplish this it must have a means for
implementing and managing the sensitivity labels. This involves handling
the interactions between the sensitivity labeling and the audit functions.
Also, the design requires a mechanism for changing and monitoring the
sensitivity designation. The labels may be in the form of designators, such
as distribution restrictors or enablers, for controlling access by
individuals or groups of users and/or access type restrictors that limit the
type of access permitted to an object. This provides the TCB with a means
of maintaining the integrity of the security label information.

3.1.1.3.1 label Integrity

o Sensitivity labels shall accurately reflect security levels of the
specific subiects or cb-iects with which they are associated

o Sensitivity labels shall accurately reflect the internal labels and
shall be associated with exnorted information

- Identify the data recuired for sensitivity labels to represent,
accurately and unarmbiguusly, security levels of specific subjects or
objects with which they are associated

Ensuring the integrity of the sensitivity labels requires the identification
of the data needed to accurately and unambiguously represent security levels
of specific subjects or objects with which they are associated. An analysis
must be done to determine this data's critical characteristics that satisfy
this criteria. Sane typical characteristics are the security level
associated with the subjects and objects, the group of users to be allowed
access to objects, and restrictions on the mode of accessing an object
(e.g., read dccess uiily, wiLte access, privil ege topuga, Gend monitcr
history of accesses).

A-28

APPEND:: A
Divisior. B, Class BI

Design:

- Establish an association between sensitivity labels exported by the TCB
and the information beigM exported, such that the seritivity labels
accurately and unambiguosly represent security levels of specific
subjects or objects with which they are associated.

The design of the mechmi.sm for maintaining the label integrity must satisfy
the requirements stated above. Thus: it must include an accurate and
unambiguous association between the sensitivity labels and the security
levels of specific subjects or objects. This association must provide a
secure and reliable logical connection between the label and its associated
subject or object.

3.1.1.3.2 Exportation of Iabeled Information

o TXB shall desiunate each commnication dannel and I/O device as either
sirgle-level or multilevel; any ghgxe in this designation shall be
done maUlly and shall be auditable by the TI

o TM(shall maintain and be able to audit any change in the current
security level associated with a single communicatign cxi nnel or I/O
device

o Rien T3M exports an object to a mlItilevel I/O device, the sensitivity
label associated with that object shall also be exported and shall
reside on the sae rhysical medium as the exported information and
shall be in the same form

o Export or import, protocol used on a multilevel cmammication channel
shall provide for the unambicmis pairing betwn the sensitivity
labels and the associated information

o Single-level I/O devices and single-level communication channels are
nt required to maintain the sensitivity labels of the information they
process; bmer. the TCB shall include a nedonism by wuch the WB
and an authorizez user reliably uixrunicate to designate the single
security level of imrorted or exported information

o ADP system administrator shall be able to specify printable names
associated with exported sensitivi-y, labels

O TCE shall mark the begEini and end of all human-readable, paged,
haixkxy' output with hunman-readable sensitivity labels that properly
reresent the sensitivity of the outmit

o IC shall, by default, mark the top and bottom of each pacqe of human-

that properly represent the overall sensitivity level of the page
o Ir shall, by default, mark other forms of human-readable output with

human-readable sensitivity labels that properly represent the
sensitivity of the output

o TCB shall audit any override of these marking defaults

A-29

APPENDIX A
Division B, C-lass B^

Paquiemnts:

- Identify the types of commicatico channels and I/0 devices to be used

with the TCB and whether they are sirnle-level or multilevel devices
- Define the policv for establishixm/carring the security designation

associated with these devichs
- Define the olicy for handlinq the preparation and handlin of human-

readable utput, ir-udirci its form

A means must be provided for the exportation of labeled information. This
requires the identification of the types of communication channels and I/O
devices to be used with the TCB, including whether they are single-level or
multilevel devices. Ensuring the proper management of this process requires
the definition of the policy for establishing/changing the security
designation associated with these devices. Also, a policy must be defined
for the preparation and handling of human-readable output. These
requirements promote secure and reliable transfer of labeled information
through communication channels and between I/O devices.

esign:

Establish the protcxxl for iuvarting and exportgr ojiects behie the
TCB and secure single-level or multilevel devices

- Establish the nechanism for labeling and producing human-readable

The design of mechanisms for handling the exportation of labeled information
must satisfy the requirements stated above. To accomplish this a protocol
must be established for importing and exporting objects between the TCB and
secure single-level or multilevel devices. Also for human-readable output
(e.g., printed output and information displayed on a terminal), the design
must include mechanisms for labeling and producing the output.

3.1.1.4 Mandatory Access Control

o TB shall enforce a mardatory access c ntrol policy over all subjects
and s ot gbjects under its crtrol

o All subiects and sto-acie objects shall be assicgd sensitivity labels
that are a combination of hierarchical classification levels and rnon-
hierarchical categories, and the labels shall be the basis of the
mandatory access control decisions

o TC shall be able to suport two or more security levels

A-30

APPEND A
Division B, Class B1

Reqiremnts:

- Identify all subiects and storage obects urkler the cxntrol of the WRB
- Describe the hierarctncal classificatim levels ar nxrr-hierarchical

categories within the 7M
- Define the mandatnry access control policy based upnm the

classification levels within the TM1

To accurately define the requirements of the mandatory access control for a
Class Bl TCB, all subjects and storage objects that are to be under the
control of the TCB must first be identified. hen the hierarchical
classification levels and non-hierarchical categories, which are to be
associated with these subjects and objects within the TCB, need to be
described. A policy for the mandatory access control must be defined that
is based on these classification levels and categories. This policy will
establish secure practices for subjects to access objects (e.g., read,
write, and modify) for which they have sufficient clearance.

Design:

- Establish a mechanism for i=legptiix the mandatory accss control

The design of the mandatory access control must satisfy the requirements for
a Class Bl TCB, as stated above. Thus, a mechanism must be established for
irplementing the mandatory access control policy. In particular, monitoring
of subjects attempting to access objects needs to be performed such that the
following hold for all accesses netween subjects and objects controlled by
the TCB: a subject may read an object only if its security level is great
enough to access the object, as determined by comparison with the object's
security level; subject may write or modify an object only if its security
level is low enough to access the object, as determined by comparison with
the object's security level. For further elaboration on mandatory access
control, refer to the TCSEC.

3.1.2 Accountability

3.1.2.1 Identification and Aut!enticaticn

(Cl):

o TCB shall require users to identify themselves to it before beginning
to perform any other actions that the TCB is expected to mediate

o TM shall maintain authentication data that includes information for
verifyinM the identity of individual users as well as information for
determininq ta clearance and authorizatics of individual users

A-31

APPENDIX A
Division B, Class B1

o TCB shall use this data to authenticate the user's identity and to
dete rnn the se'rit !e' a authorizations of subjects that may be
created to act cn the behalf of the individual user

0 TCB shall protect authentication data so that it cannot -be accessed by
any unauthorized user

(C2):

TCB shall be able to enforce individual accountability by prov'iding the
capability to uniquely identify each individual ADP system user
- IB shall provide the capability of associating the individual identity
with all auditable actions taken by that individual

(Cl):

- Identify all actions to be mediated by the TCB, including access to
authentication data

- Define a standard format for authentication data
- Determine a method for identifying users

Design:

(Cl):

- Establish a mechanism for identification and authentication of users
- Establish a mechandsm for creating and maintaining authentication data

(C2):

- Establish a mechanism for associating user identity with user actions

3.1.2.2 Audit

(C2):

o TCB shall be able to create, maintain, and protect frcm modification or
unauthorized access or destruction an audit trail of accesses to the
objects it protects

7~~~~~A ~ ~ ~ b tA-he Tl,-1 1- f+-~+, ry -h-At read amc to ir is~
limited to those who are authorized for audit data

o TCB shall be able to record: use of identification and authentication
mechanisms, introduction of objects into a user's address space,
deletion of objects, actions taken by computer operators and system

A-32

APPENDIX A
Division B, Class B!

administrators and/or system secarity officers, and other security
relevant events.

o TCB shal be able to audit any overrie of human-readable output

o For each recorded event, the audit record shall identify: date and time
of event, user, type of event, and success or failure of the event. For
identification and authentication events, the audit record shall
include origin of request (terminal ID). For events that introduce an
object into a user's address space and for ohiect deletion events, the
audit record shall include the nme of the object and the object's
secrity level.

o ADP system administrator shall be able to selectively audit the actions
of any one or more users based on individual identity and/or bject
security level.

Reqiremnts:

(C2):

- Identify all objects to be protected by the TM
- Establish ccmplete requirements for Audit Function

Design:

(C2):

- Establish a mechanism for operation of the Audit Function

3.1.3 AssurarK

3.1.3.1 Cperational AssuranCe

3.1.3.1.1 System Ardcitecbare

(Cl):

c TCB shall maintain a dckiin for its own execution that protects it from
external interference or tampering

o Resources controlled by the TCB may be a defined subset of the subjects
and objects in the ADP system

address spaces urnder its control

A-33

APPDIX A
Division B, Class B!

(C2):

o TCB shall isolate the resources to be protected so that
they are subject to the access control and auditing requirements

identify all resources and distini-t dress sace to be protected by
the MB, including the WE code and data structures

With one exception, the requirements for a Class B1 TCB will be developed in
a manner that is essentially the same as that for the previous classes of
TCBs. In a Class Bi TCB, the isolation of processes maintained by the TCB
will be accomplished through the use of distinct address spaces to be
controlled by the TCB. As a result of this exception, the requirements for
this TCB will need to identify the address spaces to be used for this
isolation. This identification is necessary so that the system developer
can determine, during the design phase, the best way to protect the address
space and its associated processes.

Design:

(Cl):

- Establish a mode for protecting each resource and each distinct address
s within the TCB

(C2):

- Establish a method of isolating resources to be protected by the TCB

As mentioned in the System Architecture Requirements, once the address
spaces to be protected by the TCB have been identified, it is necessary for
the system developer to establish a mode for protecting each of them. This
protection scheme may include hardware, firmware, or software, or some
combination of all three. Whatever the case, the intended use of the item
to be protected needs to be determined so that the most reliable protection
scheme is utilized.

A-34

APPENDIX A
Division B, Class Ba

3.1.31.1.2 System Integity

(C):

o Hardware and/or software features shall be provided that can be used to
periodically validate the correct operation of the on-site hardware and
firmware elements of the TCB

RPuixWnts:

(CI):

- Identify hardware and firmware elements of the TCB to be validated
- Determine validation criteria for testing each element of the TCB
- Determine the appropriate interval at which validation of the

hardware/f inrare should take place

Design:

(Cl):

- Establish a method for testing each criterion for each element of the
TCB

3.1.3.2 Life-Cycle Assuranc

3.1.3.2.1 Secrity Testing

(Cl):

o Security mechanims of the ADP system shall be tested and found to work
as claimed in the system documentation

o Team of individuals who thorouc hly understand the specific
implementation of the TCB shall subiect its design documentation,
sorce code, and object code to thorough analysis and tggtiM. The
team's objxectives will be to uLmrver all desian and implementation
flaws that would permit. a subject external to the TI to read, iaMe,
or delete data rannlly denied under the mandatory or discretionary
seurty policy, and to assure that no subject is able to cause the TCB
to enter a state suxh that it is unable to respond to camumications

o All discovered flaws shall be rem:red or retralized and the TCB
retested to demonstrate that they have been eliminated and that new
flaws have nut been introducd

A-35

APPENDIX A
Division B, Class B!

Requiremnts:

(Cl):

- Identify security protection mechanisms of the TCB to be tested

Design:

(Cl):

Establish a means of testing each security protection mechanism in a
mnner consistent with the trirMek reguirements detailed in the 9LIEC

Although the design of the Security Testing aspect of a Class B1 TCB is not
really different from that of any of the previous classes, the requirements
set forth for it in the TCSEC are much more detailed. As such, more
attention needs to be paid to determining the .means for testing each
security protection mechanism. The design for this security testing needs
to be performed in strict accordance with the requirements of the TCSEC.

Coding:

(Cl):

- Use prudently placed debug statements to allow the tester to monitor
operation of the security mechanisms

3.1.3.2.2 Design Specification and Verification

o Informal cr formal wdel of the security polic supported by the TCB
shall be maintained that is shown to be consistent with its axiams.

Design:

- Idet"if the mdel to be used
- Establish comisgtMM between desiqn and the model

Although no actual software development needs to be performed to satisfy
this aspect of a Class Bi TCB, sore consideration needs to be made for it
duig thI, design VIknac' fw +-ha ?CZN1:-~M AC ui;4~ Wh I - nc -h
the system developer needs to identify a model of the security policy that
can be used to establish consistency between the security policy and the
system design. This consistency should be demonstrated prior to the
comencement of the coding phase so that design modifications are eliminated
in the latter stages of the system development.

A-36

A-PPD4DIX A
D-vision E, Class B

3.1.4 Documentation

(Cl):

Documentation is an im:ortant part of the software development process. It
aids users who are not familiar with the system in learning how to use the
system correctly. It aids support programmers in testing the system to
ensure that a modification has not had a negative impact on the systert.
This is especially irportant when developing a TCB, because the security c2
the system is of the utmost iportance. While this is true, no special
consideration needs to be given to the development of the documentation for
a TCB. The documentation must be developed to meet all requirements set
forth in the TCSEC, and must be complete and up-to-date; however, this is
not particular to this development and requires no further discussion.

3.1.4.1 Security Features User's Guide

(Cl):

0 Single sumrary, chapter, or manual in user documentation shall describe
the protection mechanisms provided by the WCB, guidelines on their use,
and how they interact with one another

3.1.4.2 Trusted Facility Manual.

(Cl):

o Manual addressed to the ADP system admnistrator shall present cautions
about functions and privileges that should be controlled when running a
secure facility

(C2):

o The procedures for examining and maintaining the audit files, as well
as the detailed audit record structure for each type of audit event,
shall be given.

o Manual shall describe the oerator and administrator functicns related
to security, to include charin the securi 4 characteristics of a
user

the protection features of the system, how they interact, how to
secugrel enerte a new T(M, and facility produres, warnings, and
privileqes that need to be cmrtrolled in order to operate the facility
in a secre manner

A-37

AP-PD?-I A
D visior B, Class BI

3.1.4.3 Test Docxmentaticn

(Cl):

o System developer shall provide to the evaluators a document that
describes the test plan, test procedures that show how the security
mechanisms were tested, and results of the security mechanisms'
functional testing

3.1.4.4 Design Docnentaticn

(Cl):

o Documentation shall be available that provides a description of the
manufacturer's philosophy of protection and an explanation of how this
philosophy is translated into the TCB

o If the TCB is composed of distinct modules, the interfaces between
these modules shall be described

o An informal or formal descrirticn of the security policy model enforced
by the T shall be available and an explanaticn provided to show that
it is sufficient to enforce the seurity policy

o Specific M protection w- ni sms shall be identified and an
explanation civem to show that they satisfy the model

A-38

Division B, Class B2

3.2 CLASS B2: SM M URED FI=IN

"In class B2 systems, the TCB is based on a clearly defined and documented formal
security policy model that requires the discretionary and mandatory access
control enforcement found in class BI systems be extended to all subjects and
objects in the ADP system. In addition, covert channels are addressed. The TCB
must be carefully structured into protection-critical and non-protection-critical
elements. The TCB interface is well-defined and the TCB design and
i.mpentation enable it to be subjected to more thorough testing and more
complete review. Authentication mechanisms are strenglhened, trusted facility
management is provided in the form of mupport for system administrator a-JI
operator functions, and stringent configuration management controls are imposed.
The system is relatively resistant to penetration."

3.2.1 Security Policy

3.2.1.1 Discretionary Access Control

(Cl):

O TB shall define and control access between named users and named
objects in the ADP system

o Enforcement mechanism shall allow users to specify and control sharing
of those objects by named individuals or defined groups of individuals,
or both, and shall provide controls to limit propagation of access
rights.

(C2):

" Discretionary access control mechanism shall, either by explicit user
action or default, provide that objects are protected from unauthorized
access

o Access controls shall be capable of including or excluding access to
the granularity of a single user

o Access permission to an object by users not already possessing access
permission shall only be assigned by authorized users

Requxements:

(Cl):

- Tdtzntifv Atll types of iisa fo-)r--h N ,.r += inr-liiirwy iqrir~ii.1 iiae

and groups of users
- Identify all types of objects (e.g., files and programs) in the system
- Identify the level of sensitivity for the data within the system
- Describe all possible interactions between the users and the data

A-39

APPDD.- A
Divisior B, Class B.

- Identify the criteria for determining the need of a partncaar aser -.c
access a partic.uLar ornect

(C2):

- Identify specific individuals to be included in each group of users

Design:

(Cl):

Establish the methcd for reintaining the enforce.nt mechanism (e.g,
self/group/public controls, access control lists)

- Establish the method of controlling access to objects within the domain
of the TCB

- Establish the criteria for determining the need of a particular user to
access a particular object

- Establish mechanism for identifying users

(Cl):

- Use a defensive programming methodology, including hooks to aid testing
an Maintenance

Support.;

(Cl):

- Re-test system upon corpletion of modification
- En-ure that enforcement mechanism access control lists are maintained,

e.g., adding new users to the access control lists and removing users
from the access control lists who no longer require access to the
system

3.2.1.2 Object Reuse

(C2):

o TCB shall assure that when a storage object is initially assigned,

storage objects, the object contains no data for which the subject is
not authorized

A-40

A~D©X A

Division B, Class B:

Requirnts:

(C2):

- Identify all situations in which a storage object is initially
assigned, allocated, or reallocated fron the TCB's pool of unused
storage objects

- Identify methods for removing data from objects

Design:

(C2):

- Establish a method for determining authorization of subject for object
- Establish a method for removing data for which subject is not

authorized

3.2.1.3 Labels

o Sensitivity labels associated with each ADP system resource (e.q.,
subject, stage object) that is dor iniirectly accessible by
subiects external to the TML shall be maintained by the TCB.

(Bl):

o These labels shall be used as the basis for mandatory access control
decisions.

o To import non-labeled data, the TCB shall request and receive from an
authorized user the security level of the data, and all such actions
shall be auditable by the TCB

Rquireets:

(Bl):

- Identify all ADP system subjects and storage objects that are directly
or indirectly accessible by subiects external to the TC

- Define a policy for associating sensitivity labels with each ADP syste
subject and storage bject that is directly or jrdirectly accessible by
subjects external to the TCB, including the import of non-labeled data
and Uie exporL of ibiird data

A-41

s\'., -.ass B

Design:

(Bl):

- Establish a mechanism for implementing and managing the sensitivity
labels

- Establish an interaction between sensitivity labeling and the audit
functionFstablish a mechanisn for changing and monitoring the seristvity

designation

3.2.1.3.1 label Integrity

(Bi):

o Sensitivity labels shall accurately reflect security levels of the
specific subjects or objects with which they are associated

o Sensitivity labels shall accurately reflect the internal labels and
shall be associated with exported information

Rermnts:

(Bl):

- Identify the data required for sensitivity labels to accurately and
unambiguously represent security levels of specific subjects or objects
with which they are associated.

Design:

(Bl):

- Establish an association between sensitivity labels exoorted by the
TCB, with the information being exported, such that they accurately and
unambiguously represent security levels of specific subjects or objects
with which they are associated.

3.2.1.3.2 Exportaticn of labeled Informatin

(El):

o TCB shall designate each carmunication channel and I/O device as either
single-level or multilevel; any change in this designation shall be
done manually and shall be auditable by the TCB

A-42

AiPiJDD. A
D_.v_,s ,on T_, --.ass E

PZ B sriaUi ma~-rr, ac :e_ anie -c audit any chanqe- :n t zine -re
secrity ievel associatez with a single cornlcation channel or i/

device
o When TCB exports an object to a multilevel I/O device, the sensitivity

label associated with that object shall also be exported and shall
reside on the same physical medium as the exported information and
shall be in the same form

o Export or import protoccl used on a multilevel comunication channel
sh-al! prroide for the unambiguous pairing betwe-_n the sensi vtit
labels and the associated information

o Single-level i/O devices and single-level communication channels are
not required to maintain the sensitivity labels of the information they
process; however, the TCB shall include a mechanism by which the TCB
and an authorized user reliably communicate to designate the single
security level of imported or exported information

o ADP system administrator shall be able to specify printable names
associated with exported sensitivity labels

o TCB shall mark the beginning and end of all human-readable, paged,
hardcopy output with human-readable sensitivity labels that properly
represent the sensitivity of the output

o TCB shall, by default, mark the top and bottom of each page of human-
readable, paged, hardcopy output with human-readable sensitivity labels
that properly represent the overall sensitivity level of the page

o TCB shall, by default, mark other forms of human-readable output with
human-readable sensitivity labels that properly represent the
sensitivity of the output

o TCB shall audit any override of these marking defaults

Requiemnts:

(Bl):

- Identify the types of communication channels and I/O devices to be used
with the TCB and whether they are single-level or multilevel devices

- Define the policy for establishing/changing the security designation
associated with these devices

- Define the policy for handling the preparation and handling of human-
readable output, including its form

Design:

(Bl):

- Establish the protocol for importing and exporting objects between the
TCB and secure single-level or multilevel devices

- Establish the me-hanism for labeling and producing human-readable
output

A-43

APPENDIX A
Division B, Class B2

3.2.1.3.3 Subject Sensitivity labels

o M sbaU 3-l-iately notify a termnaul user of each chano in the
security level s-sociated with that user durinm an ive session

o A terminal user shall be able to erV the TMt as desired for a display
of the subject's complete sensitivity label

Rquremnts:

- Idectify a means for the TCB to autcmatically notify a terminal user of
each gare in the security level associated with a given user durinq
an interactive sessicn

- Identify a means for a terminal user to Mery the TCB as desired for a
display of the subject's cgmvlete sensitivity label

To properly determine the requirements for subject sensitivity labels used
in a Class B2 TCB, a means must be identified to convey information (about
the subject sensitivity) between the user and the TCB. Thus, the TCB must
be able to autcmatically notify a terminal user of each change in the
security level associated with a given user during an interactive session.
In addition, a terminal user must be able to query the TCB as desired for a
display of the subject's complete sensitivity label. This allows a subject
to remain fully informed of the contents of his sensitivity label during a
session, including the current security level associated with it.

Design:

- Establish a mechanism for the TKM to autamatically notify a terminal
user of each gep1 in the security level associated with a given user
daring an interactive session

- Establish a mechanism for a terminal user to query the TCB as desired
for a display of the subject's complete sensitivity label

The design of the medanism that handles subject sensitivity labels in a
Class B2 TCB must satisfy the requirements stated above. Thus a mechanism
must be established for the TCB to automatically notify a terminal user of
each chamnge in the security level associated with a given user during an
interactive session. In addition, a mechanism must be established for a

My Y?~e tn; rrn.5 th y dacesfred, for A dlisplay; of t-h chioe-+'c
cmplete sensitivity label. These mechanism provide the means of keeping
the terminal user informed of the contents of his current sensitivity level.

A-44

APPENDIX A
Division B, Class B2

3.2.1.3.4 Device Labels

o TW shall suport the assicnment of minium and maxim security levels
to all attached physical devices

o Security levels shall be used by the TM to enforce costraints imposed
by the rhysical ewirum its in uhich the devices are located

- Identity a means for the TB to support the assinmpt of minirm and
maximum security levels to all attached phsical devices

To properly determine the requirements for device labels in a Class B2 TCB,
a means must be identified for the TCB to support the assignment of minimum
and maxm security levels to all attached physical devices. This promotes
the maintenance of sufficiently secure usage of the physical devices
controlled by the TCB.

Design:

- Establish a mcanism far the 7M to sWport the assiciMit of minimum
and maximn security levels to all attaced plsical devices

The design of the mechanism for handling device labels in a Class B2 WECB
must satisfy the requirements stated above. To accomplish this a mechanism
must be established for the TCB to support the assignment of minimum and
maximum security levels to all attached physical devices. This must ensure
that the TCB controls its physical devices in a secure manner such that the
security levels used by the TCB enforce constraints imposed by the physical
environments in which the devices are located.

3.2.1.4 Marndatory Access Control

o TCB shall enforce a mandatory access control policy over all resources
(i.e., subjects, storage ojects and I/O devices) that are diretly or
indirectly accessible by subjects external to the TCB

(Bl) :

o All subjects and storage objects shall be assigned sensitivity labels
that are a combination of hierarchical classification levels and non-
hierarchical categories, and the labels shall be the basis of the
mandatory access control decisions

o TCB shall be able to support two or more security levels

A-45

APPENDIX A
Division B, Class B2

Requirements:

(BI):

- Identify all resources that are directly or indiretly accessible by
Deibs extenal to the o

- Describe the hierarchical classification levels and non-hierarchical
cateories wimthin the TiB

- Def ine the mandatory access control policy based upon the
classification levels within the TCB

In developing the requirements for the Mandatory Access Control aspect of a
Class B2 TCB, the control policy remains as for a Class B1 TCB; however, in
a Class B2 TCB, the policy is applicable to all resources that are directly
or indirectly accessible by subjects external to the TCB. As a result of
this expansion of applicability, the developer must, during the requirements
pIase, identify all those resources that meet the criteria. Once the
resources to be controlled have been identified, the system development will
progress as before except that more resources need to be considered.

Design:

(BI):

- Establish a mechanism for implementing the mandatory access control
policy

3.2.2 Accoutability

3.2.2.1 Identification and Authentication

(Cl):

o T UB shall require users to identify themselves to it before beginning
to perform any other actions that the TCB is expected to mediate

o TCB shall maintain authentication data that includes inforation for
verifying the identity of individual users as well as information for
determining the clearance and authorizations of individual users

o TCB shall use this data to authenticate the user's identity and to
determine the security level and authorizations of subjects that may be
created to act on the behalf of the individual user

o TCB shall protect authentication data so that it cannot be acessed by
any unauthorized user

A-46

7

APPENDIX A
Division B, Class B2

(C2):

o TCB shall be able to enforce individual acountability by providing tne
capability to uniquely identify each individual ADP system user

o TCB shall provide the capability of associating the individual identity
with all auditable actions taken by that individual

Requixements.

(Cl):

- Identify all actions to be mediated by the TCB, including access to
authentication data

- Define a standard format for authentication data
- Determine a method for identifying users

Design:

(Cl):

- Establish a mechanism for identification and authentication of users
- Establish a mechanism for creating and maintaining authentication data

- Establish a mechanism for associating user identity with user actions

3.2.2.1.1 Trusted Path

o 'CB shall support a trusted ammnication path bete itself and user
for initial lorin and authentication

" Ommm ication via this path shall be initiated exlusively by a user

Requiemnts:

- Identify a communication path between the user and the BCE that can be
trusted

- Identify all operaticr required for the T(C to support the trusted
coazmicatian ath

in identifying the requirements for the development of a trusted path for a
Class Bl TCB, a number of prelimirary determinations need to be made.
First, the system developer needs to identify the particular trusted path to
be used on the system under development. This is required prior to the next
determination, the identification of all support operations for the trusted
path, because different paths will be supported in different manners. For

A-47

APPENDIX A
Division B, Class B2

exam;.le, if the trusted path identified was through a termina2 that was
enciosed in a vault witn an arua--the-clocz: guard, the support tunzt ion Ia'.

not need to be as security conscious as if the trusted path was made througn
the use of a terminal in the middle of an unsecured roam. For the terminal
in the middle of the unsecured room, some type of front-end may need to be
implemented to protect the path from tampering.

Design:

- Establis1 a mechanism for sumportinm the trusted path
- Establish a mechanism for enablir a user to acrrss the TCB th ugh a

trusted czmunicatin path which interfaces with the identification and
authentication function

Once the items in the Requirements phase have been identified, mechanisms to
meet the requirements need to be designed. In particular, each support
operation will need to be designed so that it will operate in a secure
manner. In addition, a mechanism for allowing a user to utilize the trusted
path to access the TCB will need to be established. This mechanism will
need to interface with the identifiaition and authentication function
developed for this Class of TCB so that user security is guaranteed. Each
of these mechanisms will need to be especially reliable so that the security
of the TCB is not cmprrmised.

3.2.2.2 Audit

(C2):

o TCB shall be able to create, maintain, and protect from modification or
unauthorized access or destruction an audit trail of accesses to the
objects it protects

o Audit data shall be protected by the TICB so that read access to it is
li- ited to those who are authorized for audit data

o WE shall be able to record: use of identification and authentication
me-hanisms, introduction of objects into a user's address space,
deletion of objects, actions taken by computer operators and system
admiristrators and/or system security officers, and other security
relevant events.

o TCB shall be able to audit any override of human-readable output
markings.

o For each recorded event, the audit record shall identify: date and
time of the event, user, type of event, and success or failure of the
event. For identification and authentication events, the audit record
shall include origin of request (terminal ID). _.For events that
introduce an object into a user's address space and for object deletion

A-48

APPED1,X A
Division B, Class B.

events, the audit record shall include the nrke of the object an- the
o-ject's security level.

o ADP system adinistrator shall be able to selectively audit the actions
of any one or more users based on individual identity and/or object
security level.

o TB shall be able to audit the iertified events that my be used in
the e loitation of covert storage dannels

Pterieents.

(C2):

- Identify all cbjects to be protected by the TCB
- Establish complete requirements for Audit FAunction

Design:

(C2):

- Establish a mechanism for operation of the Audit Function

3.2.3 Asuranc

3.2.3.1 Cperational Assurance

3.2.3.1.1 System Arctitecture

(Cl):

o TCB shall maintaii a domain for its own execution that protects it from
e>ternal interference or tampering

(Bl):

o TCB shall maintain process isolation through the provision of distinct
address spaces u ' r its oontrol

o TWE shall be internally Strll trd into wll-.kefined larggly

o WE shall make effective use of available hardwarr to separate those
elements that are protecticn-ritical frco those that are not

o TM modules shall be designed such that the principle of least
privilege is enforced

o Features in hardware, saxh as segentaticn, shall be used to suiport

A-49

APFIIDX A
Division B, Class B2

logically distirct storale objects with searate attributes (namely:
readable, writable)

o T(C user-interfaoe shall be completely defined and all elements of the
Im identified

(BI):

- d lentify all resources and di.sinct address spaces to Le protected by
the TCB, including the TB code and data structures
Identify all ways in which a user can interface with the TCB by
identifyimn all elements of the TXM and igentifying the user interface
to each element

To satisfy the criteria for the System Architecture of a Class B2 TB, one
additional requirement needs to be satisfied. To satisfy the requirement,
the user interface to the TCB needs to be completely defined. First, all
elements of the TCB need to be identified. Second, the user interface to
each element needs to be identified. The cx.olete definition of the user
interface of the TCB will then be defined as the sum of all of these
individual interactions. As an exanple, one of the elements of the TOB
could be a file of data. The user interface to that file could only be
accplished through use of a program. Therefore one of the aspects of the
user interface for the TCB would be the module in the program that enables
the user access to that file.

In addition, requirements as to how the TCB is to be developed are made in
the System Architecture requirements for a Class B2 TCB. Although these
requirements add great detail to the System Architecture, they are simply
statements of good Software Engineering practices which should be used in
all systems development. As such, no additional items need to be
identified.

Eezicn:

(02):

- Establish a method of isolating resources to be protected by the TCB

(Bi):

Establish a mode for protecting each resource and distinct address
space within the TCB
Establish the user interface for the TCB

A-50

APPaIDX A
Davisoion B, Class B2

Once the recuirements for the Syst: Ardhit-acture aspe-t of a Class B2 ?B2
nave been identified, the oesign ,:,ase can. camnmerce. DIr-ng. tne des:02
phase, as discussed in Class Bl, the system developer needs to establish a
mode for protecting each resource and distinct address space within the TCB.
In addition, the developer needs to design the user interface in accordance
with the requirarwnts set forth for the System Architecture. This design
must not only facilitate those operations that sbouid be allcowed, but it
must also prohibit those operations that should be disallowed.

3.2.3.1.2 System Integrity

(Cl):

o Hardware and/or suftware features shall be provided that can be used to
periodically validate the correct operation of th. on-site hardware and
firmware elements of the TCB

Reureets:

(Cl):

- Identify hardware and firmware elements of the TCB to be validated
- Determine validation criteria for testing each element of the TCB
- Determine the appropriate interval at which validation of the

hardware/firmware should take place

Design:

(Cl):

- Establish a method for testing each criterion for each element of the
TCB

3.2.3.1.3 C(overt Cbannel Analysis

o System developer shall canduct a thorough search for covert storage
channels and make a determination of the maximum bandwidth of each
identifir dbannel

The Covert Ohannel Analysis for a Class B2 TIM involves a thorough search,
ny the system developer, for covert storage channels. This search is a
purely manual process, although the results from the search and actions
taken in response to the search need to be detailed in the system
documentation, no software development needs to take place. As such, a

A-51

Division B, Class B2

dis--ssion of the Requirement-s, Desit., Coding, Testing, or Support phase i--

not ri-eessarv•.

3.2.3.1.4 Trusted Facility Management

o TQB shall support separate operator and aedinistrator funticris

Requiremerts:

- Ide-rtifv a1 functicns to be perforned by the operator and
administrator

The Trusted Facility Management of a Class B2 TCB provides the system with
requirements for separate operator and administrator functions. In order to
properly develop requirements for this, the system developer needs to
ccmpletely define the roles of operator and administrator. Because these
roles are to be maintained as separate functions, they must be considered
separately, and the actions to be performed by each must be identified. In
addition, any interaction between the two functions needs to be described in
detail.

Design:

- 11-Etablish a nec:anim for the proper coeraticn of each of the funrtions
for the operator and each of the fArctiact for the administr-a -

During the design phase of the develowent of the operator and the
administrator functions, each of the actions to be performed by each cf the
roles needs to be considered as an individual entity. In this phase, the
determination of how each of the actions will be performed will be made.
DAring this phase, it is particularly important to ensure that the actions
performed by the operator and administrator oversee the actions of all oLnerp
users and can contribute to the maintenance of the trust and secrity of the
systemr as a whole.

3.2.3.2 Life-Cycle Assurance

3.2.3.2.1 Security Testing

(Cl):

o Security mechanisms of the ADP system shall be tested and found to work
as claimed in the system documentation

A-52

Di\'isior B, Class B,

o Team of individuals who thoroughly understand trne specitic
implementation of the TCB shall subject its design documentation,
source code, and object code to thorough analysis and testing. The
team's objectives will be to unover all design and implementation
flaws that would permit a subject external to the TCB to read, change,
or delete data normally denied under the mandatory or discretionary
security policy, and to ensure that no subject is able to cause the TCB
to enter a state such that it is unable to respond to comunications
initiated by other users

o TCB shall be fcund relatively resistant to penetration.
o All discovered flaws shall be corrected and the TCB retested to

demonstrate that they have been eliminated and that new flaws have not
been introduced

o Testin shall demontrate that the TMI implemintation is consistent
with the descriptive txy-level specification

Pequirements.

(Cl) :

- Identify security protection mechanisms of the TCB to be tested

Design:

(Bl):

Establish means of testing each security protection mechanism in a
manner consistent with the stringent requirements derailed i. the 2 EC

Coding:

(C2):

- Use prudently placed debug statements to allow the tester to monitor
operation of the security mechanisms

3.2.3.2.2 Design Specificati, and Verification

o Formal model of the security policy supported by the TCB shall be
maintained that is pr to be consistent with its axioms

o A descriptive tcp-level specification (M S) of the TCB shall be
mintained that completely and acmurately describes the TCB in terms of
eptons, error messaQes, and effects. It shall be shown to be an
acxirate description of the TCB interface.

A-53

Design:

(BI):

- Identify the model to be utilized
- Prove consistency between design and the model

As discussed previously in Class BI, the Design Specification and
verification of a TCB does not require any software development; however, it
does need to be considered during the design phase of tne software
development for the WB as a whole. During the design phase, the model to
be used =must be chosen. In a Class B2 'IUB, this is required to be a formal
model. The consistency between the design and the chosen model needs to be
formally proven. This formal proof entails the development of "a ccmplete
and convincing mathematical argument to present full logical justification
for each proof step, for the truth of a theorem, or set of theorems." To
satisfy this aspect of the development of a Class B2 TCB, thdis proof will
need to be formalized during the design phase of the system development.

3.2.3.2.3 onfiguraticn Management

o A configuratio manag system shall be in place that maintains
control of gbMM to the descrptAive top-level specification (DInS).
other design data, i l- documentation, sxrc code, the
running version of the object code, and test fixtures and documentation

o The configuration marnac nt system shall assure a consistent ang
among all documentation and code associated with the current version of
the =CB

o Tools shall be provided for gerating a new version of the TCB from
saue code and for comparirg a newly generated version with the
previous TIX version in order to ascertain that only the intended
changes have been made in the code that will actually be used as the
ne version of the TUB

The development of any large system requires the introduction and proper use
of some type of Configuration Management System. The development of a TUCB
is no exception to this rule; however, as it pertains to our discussion,
Configuration Management does not require any special considerations. A
Configuration Management System, which will guarantee that the requi..ements

A-54

;r''VP"':DI A
Davisorn B, Cass B-

3. '. r oc.mentation

(Cl):

Documentation is an important part of the software development process. It
aids users who are not familiar with the system in learning how to use the
system correctly. It aids support prgranmers in testing the system to
ensure that a modification has not had a negative impact on the system.
This is especially important when developing a TCB, because the security of
the system is of the utmost importance. iile this is true, no special
consideration needs to be given to the development of the documentation for
a TCB. The docuentation must be developed to meet all requirements set
forth in the TCSEC, and must be complete and up-to--date; however, this is
not particular to this development and requires no further discussion.

3.2.4.1 Security Features User's Guide

(Cl):

o Single summry, chapter, or manual in user documentation shall describe
the protection mechanisms provided by the TCB, guidelines on their use,
and how they interact with one another

3.2.4.2 Trusted Facility Manual

(Cl):

o Manual addressed to the ADP system administrator shall present cautions
about functions and privileges that should be controlled when rmnning a
secure facility

(C2):

0 The procedures for eyxaminLng and mainzaining the audit files, as well
as the detailed audit record structure for each type of audit event,
shall be given.

(Bl):

o Manual shall describe the operator and administrator functions related
to security, to include changing the security characteristics of a user

c Manual shall provide guidelines on the consistent and effective use of
the protection features of the system, how they interact, how to
securely generate a new TCB, and facility procedures, warnings, and
privileges that need to be controlled in order to operate the facility
in a secure manner

A-55

Division B, Class B2

0 TCB modules that cnntain the refervnc validation machara-m shall Y
identified

o Procedures for secure generation of a new TCB from source after
modification of any nodules in the TCB shall be described

3.2.4.3 Tet leosmttat

(CI):

o System developer shall orovide to the evaluators a document that
describes the test plan, test procedures that show how the security
mechanisms were tested, and results of the security mechanisms'
functional testing

o Documentation shall include results of testinM the effectiveress of the
methods used to reduce covert dhanel bandwidths

3.2.4.4 Design Docenntaticn

(Cl):

o Documentation shall be available that provides a description of the
manufacturer's philosophy of protection and an explanation of how this
philosophy is translated into the TCB

o The interfaces betwn the 7M modules shall be described
o A formal description of the security policy model enforced by the TCB

shall be available and e that is sufficient to enforce the
security policy

o Specific TCB protection mechanisms shall be identified and an
explanation given to show that they satisfy the model

o The = shall be shown to be an accurate description of the TUB
interface

o Documentation shall describe how the TM implements the reference
monitor cornet and give an explanation why it is tampe- resistant,
cannot be bypassed, and is correctly implemented.

o Documentation shall describe haw the TCB is structured to facilitate
testinq and to enforce least privil.e

o Documentatin shall also present the results of covert channel analysis
and the tradeoffs involved in restricting the cdannels

o All auditable events that may be used in the exploitation of knxown
cvert stoM cham-tels shall be identified

O 9be bandwidths of known overt storace chbannels, the use of which is
not detectable by the auditir mebdanisms, shall be provided

A-56

A~e©D. A

Davision B, Class E:

3.3 ASS B3: SECUR D3MVJI'

"The class B3 TCB must satisfy the reference monitor requirements that it mediate
all accesses of subjects to objects, be tamperproof, and be small enough to be
subjected to analysis and tests. To this end, the TCB is structured to exclude
code not essential to security policy enforcement, with significant system
engineering during TCB design and implementation directed toward minimizing its
complexity. A security administrator is supported, audit mechanisms are expanded
to signal security-relevant events, and system recovery procedures are required.
Ihe system is highly resistant to penetration."

3.3.1 Security Policy

3.3.1.1 Discretionary Acoess Crztrol

(Cl):

o TCB shall define and control access between named users and named
objects in the ADP system

o Enforcement mechanism (e.g., access control lists) shall allow users to
specify and control sharing of those obj and shall provide
controls to limit propagation of access rights

(C2):

o Discretionary access control mechanism shall, either by explicit user
action or default, provide that objects are protected from unauthorized
access

o Access controls shall be capable of specifing. for each named object,
a list of named individuals and a list of qrouips of named individuals
with their respective nodes of access to that object; furtheniore. for

each sxh namei object, it shall be possible to pecify a list of named
individuals and a list of 9Mci of named individuals for which no
access to the object is to be qiven

o Access pe=, ission tc an object by users not already possessing access
permission shall only be assigned by authorized users

Requirmnts:

(Cl):

- Identify all types of users for the system, including individual users
and groups of users

- Identify all types of objects (e.g., files and programs) in the system
- Identify the level of sensitivity for the data within the system
- Describe all possible interactions between the users and the data

A-57

APP '3I:? A

Division B, Class B3

Ident:_rv the cr:teria for de-ermining the nee of a pa'rzcru-ar user tc
access a pa icut--lc ur

(C2):

- Identify specific individuals to be included in each group of users

Design:

(Cl):

- Establish a method for maintaining the enforcement mechanism (e.g.,
self/group/public controls, access control lists)

- Establish a method of controlling access to objects within the domain
of the TCB

- Establish criteria for determining the need of a particular user to
access a particular object

- Establish a mechanism for identifying users

Coding:

(Cl):

- Use a defensive programming methodology, including hooks, to aid
testing and maintenance

Support:

(Cl):

- Re-test system upon completion of modification
- Ensure that enforcement mechanism access control lists are maintained,

e.g., adding new users to the access control lists and removing users
from the access control lists %no no longer require access to the
system

3.3.1.2 Object Reuse

(C2):

o TCB shall assure that when a storage object is initially assigned,
allocated, or reallocated to a sub3ect from the TaCB's pool of unused
storage objects, the object contains no data for which the subject is
not authorized

A-58

APPD;D:Y A
D lsion B, Class E2

- Identify all situations in which a storage object is initially
assigned, allocated, or reallocated from the TCB's pool of unused
storage objects

- Identify methods for removing d-Ata from objects

Design:

(C2):

- Establish a method for determining authorization of subject for object
- Establish a method for removing data for which subject is not

authorized

3.3.1.3 Labels

(B2):

o Sensitivity labels associated with each ADP system resource (e.g.,
subject, storage object) that is directly or indirectly accessible by
,=jects external to the TCB shall be maintained by the TCB

(Bl):

o These labels shall be used as the basis for mandatory access contrcl
decisions.

o To irport non-labeled data, the TCB shall request and receive from an
authorized user the security level of the data, and all such actions
shall be auditable by the TCB

Requirents:

(B2):

- Identify all ADP system subjects and storage objects that are directly
or indirectly accessible by subjects external to the TCB

- Define a policy for associating sensitivity labels with each ADP system
subject and storage object that is directly or indirectly accessible by
aii1-~Aj~J,-.-c- " -n a l t, Ihe W.r, 4ncudi . the ih mort of non-labhled dat2
and the expo.t of labeled data

A-59

D-:visior 5 7lass B-

Design:

(Bl):

- Establish a mechanism for implementing and managing the sensitivity
labels

- Establish an interaction between sensitivity labeling and the audit
function
Establish a iniecanism for changing and monitoring the sensitivity
designation

3.3.1.3.1 Label Interity

(El):

o Sensitivity labels shall accurately reflect security levels of the
specific subjects or objects with which they are associated

o Sensitivity labels shall accrtely reflect the internal labels and
shall be associated with exported information

(Bl):

- Identify the data required for sensitivity labels to accurately and
unambiguously represent security levels of specific subjects or objects
with which they are associated

Design:

(Bl):

- Establish an association between sensitivity labels exported by the
TCB, with the information being exported, such that they accurateiy and
unambiguously represent security levels of specific subjects or objects
with which they are associated

3.3.1.3.2 Exportation of Labeled Information

o TCB shall designate each comriuication channel and I/O device as either
single-level or multilevel; any change in this designation shall be
done manually and shall be auditable by the TCB

A-60

kPPED:)I ;A

Division B. Class B2

C T Z shall rrainta;n and be anle t. audit any ch ange ir thcE cm-rent
security level associatec w'tr. a sanlxe c=mtnicatior =,a"a. or r/C
device

o When TCB exports an object to a multilevel I/O device, the sensitivity
label associated with that object shall also be exported and shall
reside on the same pkysical medium as the exported information and
shall be in the same form

o ~Eport or --. ot protocol used on a ultillevel. c__ omruication channel
shall provide for the unambiguous pairing between the sensitivity
labels and the associated information

o Single-level I/O devices and single-level communication channels are
not required to maintain the sensitivity labels of the information they
process; however, the TCB shall include a mechanism by which the TCB
and an authorized user reliably comunicate to designate the single
security level of itported or exported information

o ADP system administrator shall be able to specify printable names
associated with exported sensitivity labels

o TCB shall mark the beginning and end of all human-readable, paged,
hardcopy output with human-readable sensitivity labels that properly
represent the sensitivity of the output

o TCB shall, by default, mark the top and bottom of each page of human-
readable, paged, hardcopy output with human-readable sensitivity labels
that properly represent the overall sensitivity level of the page

o TCB shall, by default, mark other forms of human-readable output with
human-readable sensitivity labels that properly represent the
sensitivity of the output

o TCB shall audit any override of these marking defaults

(Bl):

Identify the types of communication channels and I/O devices to be used
with the TICB and whether they are single-level or multilevel devices
Define the policy for establishing/changing the security designation
associated with these devices
Define the policy for preparing and handling human-readable output,
including its form

Design:

(BI):

- EstablJst the protocol for iporting and exporting objects between the
TCB and secure single-level or multilevel devices

- Establish the mechanism for labeling and producing human-readable
outp t

A-61

_. .o. . Class B,.

3. SubJect Semi",vity LarA_Iz

(B2):

o TCB shall immediately notify a terminal user of each change in the
security level associated with that user during an interactive session

o A terminal user shall be able to query the TUB as desired for a display
of the subject's complete sensitiJvity label

(B2):

- Identify a means for the TCB to automatically notify a terminal user of
each change in the security level associated with a given user during
an interactive session

- Identify a means for a terminal user to query the TCB as desired for a
display of the subject's conplete sensitivity label

Design:

(B2):

- Establish a mechanism for the TCB to autamtically notify a terminal
user of each change in the security level associated with a given user
during an interactive session

- Establish a mechanism for a terminal user to query the TCB as desired
for a display of the subject's complete sensitivity label

3.3.1.3.4 Device Labels

(B2':

o TCB shal! support the assignment of minimum and maximum security levels
to all attached physical devices

o Security levels shall be used by the TCB to enforce constraints imposed
by the physical environments in which the devices are located

(B2):

Identify a means for the TCB to support the assignment of minimum and
maximum secu-ity levels to all attached physical devices

A-62

D2Vsl2on E, Class F"

Design:

(B2):

- Establish a mechanism for the TCB to support the assignment of minimum
and maxium security levels to all attached hysical devices

3.3.1.4 Markiatory Access Control

(B2):

o TCB shall enforce a mandatory access control policy over all resources
(i.e., subjects, storage objects, and I/O devices) that are directly or
indirectly accessible by subjects external to the TCB

(B1):

o All subjects and storage objects shall be assigned sensitivity labels
that are a combination of hierarchical classification levels and non-
hierarchical categories, and the labels shall be the basis of the
mandatory access control decisions

o TCB shall be able to support two or more seaurity levels

(8):

- Describe the hierarchical and non-hierarchical classification levels
within the TCB

- Define the mandatory access control 1licy based upon the
classification levels within the TCB

(B2):

- Identify all resouzces that are directly or indirectly accessible by
subjects external to the TCB

Design:

(B1):

- Establish a mechanisLc for implementing the mandatory access control
policy

A-63

k"PD:>i. A
Dvvisior B, C.ass B?

3.3.2 aii'

3.3.2.1 Identification and Authenrtication

(Cl):

o TCB shall require users to identify themselves to it before beginning
to perform any other actions that the WCB is expected to mediate

o TCB shall maintain authentication data that includes information for
verifying the identity of individual users as well as information for
determining the clearance and authorizations of individual users

o TCB shall use this data to authenticate the user's identity and to
determine the security level and authorizations of subjects that ray be
created to act on the behalf of the irrividual user

o 'CB shall protect authentication data so that it cannot be accessed by
any unauthorized user

(C2):

o TCB shall be able to enforce individual accountability by providing the
capability to uniquely identify each individual ADP system user

o TCB sall provide the capability of associating the individual identity
with all auditable actions taken by taat individual

Pequxemnts:

(Cl):

- Identify all. actions to be mediated by the TCB, including access to
authentication data

- Define a standard format for authentication data
- Detertine a method for identify'ir users

Design:

(Cl):

- Establish a mechanism for identifying and authienticating users
- Establish a mechanism for creating and maintaining authentication data

(C2):

- Establish a mechanisar for associating user identity with user actions

A-64

'.v.sao, E Cass E

3.3. 2.1. ! Tusted Path

o TCB shall support a trusted comnunication patn between itself anzd users
for use when a positive Tcs-to-user carrectign is reguire (e.g.,
locrin , ian!IM subject security level)

o c(mmmnication via this trusted path shall be activated exclusively by a
user or the TM ari sha be lc ycali isolated ar bly
distinmuishable from other paths

Requieents:

(B2):

- Identify a trusted cmmunication path between the user and the TCB
- Identify all operations required for the TCB to support the trusted

conmmication path

Design:

(B2):

- Establish a mechanism for supporting the trusted path
- Establish a mechanism for enabling user-to-U and 1CB-to-user access

via the trusted communication path which interfaces with the
identification and authentication function

The rAiisted Path for a Class B3 WB needs to allcA, bi-directional access,
fron user to TCB and from TCB to user. This consideration must nme into
play when developing the design for the mechanism that will enable this
access. All other items from the Class B2 TCB also apply here.

?.3.2.2 Audit

(C2):

o TCB shall be able to create, maintain, and protect from modification or
unauthorized access or destruction an audit trail of accesses to the
objects it protects

o Audit data shall be protected by the WCB so that read access to it is
limited to those who are authorized for audit data

o TCB shall be able to record: use of identification and authentication
mechan s.., introduction of ob3 ects into a user' s address space,
deletion of cbjects, actions taken by computer operators and syste,
adminiistrators and/c.: system, security officers, and other security
relevant even-ts.

A-65

S, Class P

T-B shall be able tc' aud:= any cyverride of hmar-readahlE outpu-
r nars.

o For each recorded event, the audit record shall identify: date and time
of event, user, type of event, and success or failure of the event.
For identification and authentication events, the audit record shall
include origin of request (terminal ID). For events that introduce an
object into a user's address space and for object deletion events, the
audit record shall include the name of the object and the object's
security level.

o ADP system administrator shall be able to selectively audit the actions
of any one or more users based on individual identity arndor object
security level.

(B2):

o TCB shall be able to audit the identified events that may be used in
the exploitation of covert storage channels

o TM[shall contain a mechanism that is able to mcnitor the occurrence or
acx~zmlatian of security auditable events that may iicate an iminent
violation of secirity policy; this ncin shall be able to
imnediately notify the security - aministrator when threolds are
exceeded arl. if the o cr accumulation of thee searity
relevant events coxtinies. the system shall take the least disin-dve
action to terminate the event

Requrmnts:

(C2):

- Identify all objects to be prctecrd by the TCB
- Establish complete requirements for Audit Function
- Define criteria for indicaticn of an imminent violation of e

The requirements for the auditing fanctions in a Class B3 TCB must inc),:e
those of Classes C2, BI, and B2. In addition, a criteria must be defined
for the indication of an imminent violation of the security policy. This
criteria requires that these additional auditing functions must be able to
monitor the occurrence or accumulation of security auditable events that may
indicate such violations. Thus, these additional events must be accounted
for in the audit trail.

(C2):

- Establish a mechanismn for operation of Audit Function

A-66

Division P, Class B-1

Dsic jn a mEcianisr t: mxautor seurit-v auditable event_- and tc Tyyt '
serity acbranistrator

The design of the auditing functions in a Class B3 TCB must satisfy the
requirements stated above. Thus, its design should incorporate that of
Classes C2, Bi, and B2. In addition, it must include the design of a
mechanism to monitor security auditable events and to notify the security
administrator accordingly. This is to ensure that the security
administrator is kept well informed of such events so that he can take
appropriate and prompt action in response to their occurrence.

3.3.3 Asmrar

3.3.3.1 Operaticria1 Assurac

3.3.3.1.1 System Architecture

(Cl):

o TCB shall maintain a domain for its own execution that protects it from
external interference or tampering

(Bl):

o TCB shall maintain process isolation through the provision of distinct
address spaces under its control

(B2):

o B shall be internally structured into well-defined largely
independent modules

o TCB shall make effective use of available hardware to separ-.e those
elements that are protection-critical from those that are not

o TCB modules shall be designed such that the principle of least
privilege is enforced

o Features in hardware, such as segmentation, shall be used to support
logically distinct storage objects with separate attributes (namely:
readable, writable)

o TCB user interface shall be completely defined and all elements of the
TCB identified

o IT(shall be desicned and stnictured to use a cxmwlete, cpxpgpal.ly
simple protection mechanism with precisely defined semantics; this
mechanism s-all play a cextzal role in enforcinm the internal
stiixcurimr of the =IB a the system

o TM shafl incorporate sinificant use of layerinq, abstraction,and
data hiding. Siamificant system ergineering shall be directed toward

A-67

~.n'.s~~-F Class B2?

min-dizinr the rop]exJty _of h Th are c>_xLudinm tr -, P2 moxuk -
that are not rto-C]tca

Reqirements:

(BI) :

- Identify all resources and distinct address spaces to be protected by
the TCB, including the TCB code and data structures

(B2):

- Identify all ways in which a user can interface with the TCB by
identifying all elements of the TCB and identifying the user interface
to each

Design:

(C2):

- Establish method of isolating resources to be protected by the TCB

(Bi) :

- Establish a mode for protecting each resource and distinct address
space within the TCB

(B2):

- Establish the user interface for the WB

3.3.3.1.2 System Integrity

(Cl):

C Hardware and/or software features shall be provided that can be used to
periodically validate the correct operation of the on-site hardware and
firmware elements of the TCB

Rqirxits.

(Cl):

- Identify hardware and fir re elements of the TCB to be validated
- Determine validation criteria for testing each element of the TCB

A-68

p-e r:- wi =n e annropr: atc :nter,--- n.*
ard&r6 'toriulc taKe platE

Design:

(Cl) :

- Establish a method for testing each criterion for each element of the
TCB

3.3.3.1.3 Covert Channel Analysis

o System developer shall conduct a thorough search for covert channels
and make a determination of the maximum bandwidth of each identified
channel

As mentioned in the Covert Channel Analysis section of the Class B2 TCB
discussion, this analysis is performed by the system developer and requires
no software development. As such, no discussion of this topic is necessary.
It is important, however, to note that in the development of a Class B3 TCB,
the search performed by the system developer is for all covert channels.
The scope of the search is expanded from that of the Class B2 TCB, because
covert channels include Lith covert storage channels and covert timing
channels.

3.3.3.1.4 Trusted Facility Management

(B2):

o TCB shall support separate operator and administrator functions
o Functions performed in the role of security administrator shall be

identified
o ADP system administrative personnel shall cnly be able to perform

security administrator fuzcticrs after taking a distinct auditable
action to assume the security administrator role on the ADP systm

o Ngn-sgarity functions that can be performed in the c iy
adminstratioi role shall be limited strictly to those essential to
performinq the security role effectively

A-69

D2visor Br, -- ass' PB'

Requixts:

(B2):

- Identify all functions to be performed by the operator and
administrator

- Classify administrator functicns as system or seurity

The major distinction between !Tusted Facility Management in a Class B2 TCB
and rusted Facility Panagement in a Class w *b deals wirn the level of
protection for the administrative functions. In Class C2: all of these
functions, including system administration and security administration, are
all at the same level of protection. In a Class B3 TCB, although these
functions are all accessible via the administration function, a special
auditable action is required to access the security administration
functions. To develop the administrator function properly, an additional
requirement is necessary. In addition to identifying all functions to be
performed by the administrator, each identified function must be classified
as to whether it is a system function or a security function.

Design:

(B2):

- Establish a mechanism for the proper operation of each of the functions
for the operator and each of the functions for the administrator

3.3.3.1.5 Trusted Recovery

o Procedures and/or mechanisms shall be provided to assure that, after an
ADP system failure or other disontinuity. recovery without a
protection compromise is obtained

Reauirements:

- Identify a means for assurinqt that system failure will not result in a
protection comrom.ise

To properly determine the requirements for the trusted recovery of a Class
B3 TCB, a means must be identified for assuring that after an ADP system
failure or other discontinuity, system recovery can be achieved without
coirpromising thle security protection of the TCB. When such a failure
occurs, all accesses to the TCB, especially through communicaticn channels
and device I/O, are securely terminated. During system recovery the state
of accesses to the TCB must be checked to ensure that no unauthorized access

A-70

Davisio:" B, Class B.

is possible. Thus, the intcrn-.-" of tne sezurity of the TCE mast .
maintained -=ric syste'7 rezve. as we-. as z=zing norma systen opera-.Ior.

Design:

- Establish a mechanism for ppggrini from system failure in a trusted

The design of a mechanism for trusted recovery from an ADP system failure
must satisfy the requirements stated above. It must provide a means for the
system to cmpletely maintain the integrity of the TCS's security during
failure and system recovery so that no unauthorized access (e.g., through
covert channels) to the TCB is allowed during these vulnerable times.

3.3.3.2 Life-Cycle Assuranoe

3.3.3.2.1 Security Testing

(cl):

o Security mechanisms of the ADP system shall be tested and found to work
as claimed in the system documentation

(Bl):

o Team of individuals who thoroughly understand the specific
implementation of the TCB shall subject its design documentation,
source code, and object code to thorough analysis and testing. The
team's objectives will be (1) to uncover all design and implementation
flaws that would permit a subject external to the TCB to read, change,
or delete data normally denied under the mandatory or discretionary
security policy, and (2) to assure that no subject is able to cause the
TCB to enter a state such that it is unable to respond to
comminications initiated py other users

o TCB shall be found resistant to penetraticn

(B2):

o All discovered flaws shall be corrected and the WCB retested to
demonstrate that they have been eliminated and that new flaws have not
been introduced

o Testing shall demonstrate that the TCB implementation is consistent
with the descriptive top-level specification

o No design flaws and no more than a few correctable imlementation fLaws
may be found during testing1, and there shall be reasonable conficence
that few remain

A-71

• .!o. Class '

Requiremnts:

- Identify security protection mechanisms of the TCB to be tested

Deign:

(BI):

- Establish means of testing each security protection mechanism in a
manner consistent with the stringent requirements detailed in the TEC

(Cl):

- Use prudently placed debug statements to allow the tester to monitor
operation of the security itechanisms

3.3.3.2.2 Design Specification and erification

(B32):

o Formal model of the security policy supported by the TCB shall be
maintained that is proven to be consistent with its axioms

o A descriptive top-level specification (DYLS) of the TCB shall be
ma.ntained that completely and accurately describes the TCB in terms of
exceptions, error messages, and effects. It shall be shown to be an
accurate description of the TCB interface.

o A ccnvincinq -argument shall be cliven that the MS L is consistent with
the model

Design:

(B):

- Identify the model to be utilized
- Prove consistency between design and the model

A-72

D~x'1s~or .E O:as- B.

c . - - OofLfauratio- Of k-oment

(B2):

o A configuration management system shall be in place that maintains
control of changes to the descriptive top-level specification, other
design data, implementation documentation, source code, the running
version of the object code, and test fixtures and documentation

o The configuration management system shall assure a consistent mapping
among all documenation and code associated with the current version of
the TCB

o Tools shall be provided for generation of a new version of the TCB from
source code and for comparing a newly generated version with the
previous TCB version in order to ascertain that only the intended
changes have been made in the code that will actually be used as the
new version of the TCB

3.3.4 Docxvmrtaticn

(Cl):

Documentation is an important part of the software development process. It
aids users who are not familiar with the system in learning how to use the
system corectly. It ai- su-port programmers in testing the system to
ensure that a modification has not had a negative impact on the system.
This is especially important when developing a TCB, because the security of
the system is of the utmost importance. While this is true, no special
consideration needs to be given to the developmit of the documentation for
the TCB. The documentation must be developed to meet all requirements set
forth in the TCSEC, and must be complete and up-to-date; however, this is
not particular to this development and requires no further discussion.

3.3.4.1 Secarity Features User's Guide

(Cl):

o Single summary, chapter, or manual in user documentation shall describe
the protection mechanisms provided by the TCB, guidelines on their use,
and how they interact with one another

A-73

DM'1sion 1- Class B'

34.2 Tn sted Facility Maura

(Cl) :

o Manual addressed to the ADP system administrator shall present cautions
about functic-ns and privileges that should be controlled when running a
secure facility

(C2):

o The procedures for examining and maintaining the audit files, as well
as the detailed audit record structure for each type of audit event,
shall be given

(Bi):

o Manual shall describe the operator and administrator functions related
to security, to include changing the security characteristics of a user

o Manual shall provide guidelines on the consistent and effective use of
the protection features of the system, how they interact, how to
securely generate a new TCB, and faci.ity procedures, wanings, and
privileges that need to be controlled in order to operate the facility
in a secure manner

(B2):

o TCB modules that contain the reference validation mechanimr shall be
identified

o Procedures for secure generation of a new TCB frc= source after
modification of any modules in the TCB shall be described

o Marol shall includle the procedures to ensure that the stem is
Lutially, started in a secure marer

o Procedures shal also be included to esum secure svstm cydtion

after any lapse in system operation

3.3.4.3 Test Documentation

(Cl):

o Syste developer shall provide to the evaluators a dcurent that
describes the test plan, test procedures that show how the security
mechanisms were tested, and results of the security mechanisms'
functional testing

A-74

lvislor P, C~ass-

o Documoentation shall include results of testing of effectiveness of the

methods used to reduce covert channel bandwidths

3.3.4.4 Design Documentatin

(Cl):

o Docmentation shall be available that provides a description of the
manufacturer s philosophy of protection and an explanation of how this
philosophy is translated into the 'ICB

(B2):

o he interfaces between the TB modules shall be described
o A fonml description of the security policy rcdel enforced by the TCB

shall be available and proven to be sufficient to enforce the security
policy

o Specific TCB protection mechanisms shall be identified and an
explanation given to shc that they satisfy the model

o Tie D1LS shall be shown to be an accurate description of the TCB
interface

o MM imolentatic f _e. - , and sofewar shall be
ifon3 E .Am tobe sistert with tte DFLS

o The elements of the EIfS sall besk , usirg informal te inqcues. to
to the elceents of the ILS

o Documentation shall describe now th'e TCB iqtlemerts the reference
monitor concept and give an explanation why it is tamper resistant,
cannot be bypassed, and is correctly imnplointed

o Documn~etation shall describe hcw the TCB is structured to facilitate
testing and -o enforce least privilege

o Doczmetation shall also preent the results of coert chaznel analysis
and tkh tradeoffs involved in restri-.ting the channels

c All auditable events zhat may be used ini the eyploitat-ion of known
covert stor-age dhl-nneis shall be identified

o The bandwidths ot knoy..u covert storage chamiels, the i€ce of which is
not detectable by the auditing mcchanisms, shall be provided

A-7

L~uu-tzent of Defense Trusted Campatez Syste Evaluation Criteria.
National Computer Security Center, December 1985

Firn Evaluation Report of Sggp. Secure Coanrmcations
Processor STOP Release 2.1, 23 September 1985

Trusted oMuter System Security Reqirements Guide for PxD AV1icatiois.
1 Septemer 1987

Truste Net~rk Intgez n*~i of tive Trusted 9qVqte gvs$-
Evaluatix Criteria. National CaOuter Security Center,
31 July 1987

A-76

APPENDIX B

Benefits of
and

Potential Deterrents
to Using Ada in the

Software Developrent Process
of Trusted Ccaputing Bases

Prepared for:

National Cacater Security Center
9800 Savage Road

Fort Meade, MD 20755

Prepared by:

Ada Aiplications and
Software Technology Grcxp

IIT Research Institute
4600 Forbes Boulevard

lah am, MD 20706

April 1989

B-i

B-2

APPENDIX B
TABLE OF CINTTENT

!. 0 INTRODUCTION ... B-5

1.1 Bac gr B-5
1.2 Format B-510. He Term

2.0 BENEFITS OF AND PTE2n1I L IErERRE~aMS
To USING ADA IN DEVEDOPING TCB SYS B-8

2.1 Benefits of Using Ada in Developing TCB Syste B-9
2.1.1 Data Abstraction B-9
2.1.2 Information Hiding B-9
2. 1. 3 Modularity and localization B-li
2.1.4 Dynamic Storage with Access Types B-II
2.1.5 Concurrent Wagramming with Tasking B-12
2.1.6 Compilation of Specifications B-12
2.1.7 Reusable Code B-12
2.1.8 Standardization and Portability B-13

2.2 Potential Deterrents to Using Ada in Developing TCB Systems B-13

2.2.1 Shortcctings Inherent to Prgranuing
languages in General in Developing TCB Systems B-13

2.2.1.1 Static Storage .. B-13
2.2.1.2 Dynamic Storage ... B-14
2.2.1.3 Input and Out~pt -.................................. B-14
2.2.1.4 Global Variables B-14
2.2.1.5 Concurrent Processing B-14
2.2.1.6 Go To Statements B-15
2.2.1.7 Interrupts B-15
2.218 Iack of Modu.larity B-16

2.2.2 Shortcomings Unique to the Ada Language
in Developing TCB Systems B-16

2.2.2.1 Static Storage B-16
2.2.2.2 Dynamic Storage with Access Types B-17
2.2.2.3 Activation Records ... B-17
2.2.2.4 Global Variables B-17
2.2.2.5 Conrurr nt Programing with Tasking B-18
2.2.2.6 Use Clauses and Renaming Declarations B-19
2.2.2.7 Unchecked Programing. B-24
2.2.2.8 Exceptions B-28
2.2.2.9 Interface with Other languages B-32
2.2.2.10 Representation Clauses and Implementation Dependent Features ... B-33
2.2.2.11 System Timing from Package CALENDAR B-38
2.2.2.12 Tailoring and Configuring Ada Compiler and Runtime System B-38

B-3

2.1 BENEFITS OF USING TOOLS TO DEVELOP ADA SOFTTARE
FOR TCB SYSTEMS .. B-38

2.3.1 Desirable Features of Tools for the Development
of Ada Software for TCB Systems B-39

2.2.2 Tools Available for the Development of Ada
Software for TCB Systems ... B-39

3.0 MAPPING OF ADA USAGE TO TCB CRITERIA
GENERALIZED TCB CRITERIA
(CLASS B3: SEaJRITIy DmAINS) B-42

3.1 Security Policy .. B-42

3.1.1 Discretionary Access Control B-42
-3.1.2 Object Reuse ... B-43
3.1.3 Labels B-44
3.1.4 Mardatory Access Control ... B-44

3.2 Accountability .. B-45

3.2.1 Identification and Authentication B-46
3.2.2 Trusted Path ... B-46
3.2.3 Audit .. B-44

3.3 Assurance .. B-47

3.3.1 Operational Assurance ... B-48
3.3.2 Life-Cycle Assurance ... B-49

3.4 Documentation B-51

3.4.1 Security Features User's Guide B-52
3.4.2 Trusted Facility Manual .. B-52
3.4.3 Test Documentation .. B-53
3.4.4 Design Documentation ... B-53

4.0 SUMMARY AND CONCLUSIONS .. B-54

4.1 SUMMARY ... B-54
4.2 CONCLUSIONS .. B-54

5.0 BIBLIOGRAPHY ... B-55

B-4

APPSDIX B
Introduction

a. 0 IlROUJCION

1.1 B

One intent of this appendix is to identify benefits of using Ada in the software
development of TCB systems. These benefits include Ada's assets in the
application of sound software engineering principles, such as data abstraction,
information hiding, modularity, and localization. Also included among the
benefits are such Ada constructs as strong data typing, packages, subprograms,
and tasks. Also the benefits of using tools in the develpment of Ada language
software are discussed.

Another intent of this appendix is to identify and categorize potential
deterrents of using Ada in the software development of TCB systems. These
include shortcomings inherent to programming languages in general; shortcomings
unique to the Ada language.

This appendix is meant to stand alone; however, a familiarity with the TCSEC is
recommended to be better able to use this appendix. Also, familiarity with the
Ada programming language is helpful.

1.2 Format

This appendix consists of four sections. The first section is an introduction
which consists of background information and definitions of key terms that appear
in this report. The key terms section includes terms found in the glossary of
the TCSEC, the Reference Manual for the Ada Pro=aning languaQe (IUM) [ANSI/MIL-
STD-1815A-1983], and the IEEE Standard Glossary of Software EnQineerinq
TerminolQy [1983]. Sections 2.0 and 3.0 address the benefits and
deterrents issues in two ways. First, Section 2.0 focuses on the following
issues: (1) Benefits of using Ada in Developing TCB systems, (2) Potential
deterrents to using Ada in developing TCB systems, (3) Shortcomings inherent to
programming languages in general in developing TCB systems, (4) Shortcmings
unique to the Ada language in developing TCB systems, (5) Benefits of using tools
for developing Ada software for TCB systems. Section 3.0 presents these issues
in the context of a mapping of Ada usage to generalized TCB criteria. In
particular, class B3 as defined in the TCSEC is used as a template for the
generalized TCB criteria. Ada constructs and features are identified that may be
used to implement TCB functions and features. Though potential problems are
identified with using various Ada constructs and features, this is not meant to
iuply that any of tne constructs and features snould not be useK; only that the
security of the TCB must not be ccmprmised when any of the constructs and
features are used in the implementation of the TCB. Section 4.0 consists of a
sumnary of this report and its conclusions.

B-5

APPah"DIX B

Introductic

1.3 Key

Several key words appear throughout the text of this appendix. These words have
specific meanings within the context of certified systems, and their definitions
are presented here. These definitions are taken directly from the TCSEC:

Acoess - A specific type of interaction between a subject and an object that
results in the flow of information from one to the other.

Audit Trail - A set of records that collectively provide documentary evidence of
processing used to aid in tracing frum original transactions forward to
related records and reports, and/or backwards frum records and reports to
their camponent source transactions.

Covert Cbamel - A communication channel that allows a process to transfer

information in a manner that violates the systen's security policy.

Data - Information with a specific ptysical representation.

Disret:cunary Access Qtrol - A means of restricting access to objects based on
the identity of subjects and/or groups to which they belong. The controls
are discretionary in the sense that a subject with a certain access
permission is capable of passing that permission (perhaps indirectly) on to
any other subject (unless restrained by mandatory access control).

Mandatory Access Cntrol - A means of restricting access to objects based on the
sensitivity (as represented by a label) of the information contained in the
objects and the formal authorization (i.e., clearance) of subjects to access
information of such sensitivity.

Cbject - A passive entity that contains or receives information. Access to an
object potentially implies access to the information it contains. Examples
of objects are: records, blocks, pages, segments, files, directories,
directory trees, and programs, as well as bits, bytes, words, fields,
processors, video displays, keyboards, clocks, printers, network nodes, etc.

Sensitivity Label - A piece of information that represents the security level of
an object and that describes the sensitivity (e.g., classification) of the
data in the object. Sensitivity labels are used by the TCB as the basis for
mandatory access control decisions.

Subject - An active entity, generally in the form of a person, process, or device
that causes information to flow among objects or changes the system state.
Technically, a process/domain pair.

B-6

APPENDIX B

Introduction

Trusted Computing Base (WB) - The totalitvy of protection mechanisms within a
coputer system -- inc-ludng hardware firmware, and software -- t1le
combination of which is responsible for enforcing a security policy. A TCB
consists of one or more camponents that together enforce a unified security
policy over a product or system. The ability of a TCB to correctly enforce
a security policy depends solely on the mechanism within the TCB and on the
correct input by system administrative personnel of parameters (e.g., a
user's clearance) related to the security policy.

Additional Terms

These terms are included because they appear frequently in the following text.

Pragma - A compiler directive. That is, it "is used to convey information to
the oumpiler." According to the Ada language reference manual [ANSI/MIL-
STD-1815A-1983], the predefined pragmas (Refer to Annex B in this manual for
descriptions) 'qa st be supported by every implementation. In addition, an
implementation may provide implementation-defined pragmas, which must then
be described in Apperdix F", i.e., the appendix on implementation-dependent
characteristics that the Ada copiler vendor must provide in his Ada
language reference manual.

Security - The protection of computer hardware and software from accidental or
malicious access, use, modification, destruction, or disclosure. Security
also pertains to personnel, data, ccmunications, and the physical
protection of computer installations [iE 1983). Specifically, for the
purposes of this report, security is defined by the criteria in the TCSEC,
i.e., a given security problem corresponds with a specific TCSEC criteria.

To better appreciate the viewpoint of this appendix, the reader is advised that
the word "may" is used frequently to avoid incorrect absolute blanket assertions.
In particular, the use of "may" indicates that potential security risks are
subject to arise when using the various Ada (and other higher order language
(HOL)) constructs and techiniques. That is, the presence and severity of any
given security risk depends on how the various constructs and techniques are
implemented and the context in which they are used. Therefore, the ttse of any
given construct or technique my cmpramise security, depending on its
implementation and the context of its use.

B-7

APPENTDI .

Benefits of and PotentiaL Deterrents tzUsing Ada in Deveioping Sstems

2.0 BENEFITS AND POTEITAL DEERRENIS OF USING ADA IN DEVELOPING TCB SYSTE4S

This section addresses three issues: benefits of using Ada, shortcomings of using
higher order languages (HOls) in general and Ada in particular, and the benefits
of using system development tools. Although potential problem are identified
with using various HOIs and Ada features, this is not meant to iply that any of
the features should not be used. Rather, the security of the TCB must not be
copprnmised when any of the constructs and features are used in the
implementation of the. TCB. Similarly, although currently available system
development tools have their limitations, the benefits of using them may offset
these limitations, especially when ccmpared with not using any tools.

Though this report does not advocate abstaining from using any Ada constructs, it
should be noted that each of them, to varying degrees, contributes to a large Ada
runtime library. Eric Anderson, in his paper, "Ada's Suitability for Truted
Computer Systems," proposes the extreme view of minimizing the Ada runtime
library for the security kernel as a primary goal itself, because its size may
lend itself to hiding covert channels and Trojan horses. This problem of an
excessively large Ada runtime library is in addition to the potential deterrents
associated with the various Ada constructs that are discussed below.

To minimize the size of the Ada runtine library Eric Anderson proposes the
following severe restrictions on the use of Ada constructs in creating the
security kernel: not allowing use of any dynamic storage, tasking, exception
handling, any Ada standard packages other than STANDARD and SYSTEM; and limiting
the use of runtime constraint checking, math and conversion routines, and
representation clauses. Addressing the security issues associated with the Ada
runtime library are beyond the scope of this report. Clearly, though, Ada
runtime library security issues need to be addressed by further research.

B-8

APPENDIX P
Benefits of and Potential Deterrents t,
Using Ada i. [Rvelopino Systems

2.1 Benefits of Using Ada in DevelopinQ TCB Systems

The following beneficial features are available in the Ada programming language.

2. 1. 1 Data Abstraction:
Ada's data abstraction mechanisms are well suited to represent the data
objects in a system's design, namely, that of a TCB. They serve the
conceptual manipulation of the data objects in a relatively high-level of
abstraction without regard to their underlying representation. Ada allows
data to be abstracted with abstract data types. An abstract data type is a
construct that "denotes a class of objects whose behavior is defined by a
set of values and a set of operations" [Booch 1987A, p.613]. Ada's two
primary features that promote the creation of abstract data types are its
strong data typing facilities and its packaging mechanism. Strong data
typing serves to iso]ate data types. A package can be used to define an
abstract data type by encapsulating its underlying data types and the
operations associated with the abstract data type. Ada's strong data typing
facility allows the creation of user-defined types, namely, subtypes and
derived types. Using Ada's data abstraction techniques aids the
representation of data objects in the problem space of any system, including
a TCB. "Abstraction aids in the maintainability and understandability of
systems by reducing the details a developer needs to know at any given
level" [Booch 1987B, p.33). Data abstraction enhances understandability by
allowing the review of system design to focus on high-level, abstract data
elements instead of smaller comnent parts. This increases the
understandability of both the design and the code. Thus, this sound
software engineering technique can promote an Ada TCB system's design,
implementation, and maintenance.

2.1.2 Information Hiding:
Ada's information hiding facilities complement its data abstraction
capabilities. Whereas abstractions extract the essential details of a giver.
level, "the purpose of hiding is to make inaccessible certain details that
should not affect other parts of a system" [Ross, Goodenough, Irvine 1975,
p.67]. "Information hiding therefore suppresses how an object or operation
is implemented, and so focuses our attention on the higher abstraction"
[Booch 1987B, p.33). Two Ada constructs that are well suited for
implementing information hiding are packages and private types. "Packages
can be used to hide information from the rest of the program while making
expli it te inLerfaCe wIth other program parts * 'i'nIS has the aantage

that implementation details of each package can be changed by altering only
its body, and that the rest of the program may be understood without
reference to these details" [Nissen and Wallis 1984, p.122]. As much as

B-9

APR-.C: B
Benef --- of and Potentia: Deterrens- toe
Using , ir Deveo - ing Systens

possible of the impleentation detail should be hidden in the body of the
package.

Hiding the information about the inplementation of the data abstraction of a
data object is achieved in Ada by encapsulating the abstraction in a
package, i.e., by hiding the implementation of the object and controlling
access to the object so as to encourage and enforce the abstraction. This
typically is done with the use of private types and limited private types.
In particular,. Ada's private types enable the focus to be placed on higher-
level real-world abstractions rather than on the details of an
implemntation. The following implicit operations may be performed on
private types: assigrmient, tests of equality and inequality, explicit type
conversion, membership tests, type qualification, and the use of selected
ccponents for the selection of any of the private type's discriminant. For
limited private types, though, only those operations defined in the
corresponding package specification are allowed. For more detailed
information on private types, refer to the Ada IM [ANSI/MIL-STD-1815A-
1983). "Private types prevent misuse of structures by users, presenting
them only with the abstract operations appropriate for the abstractions
involved" [Nissen and Wallis 1984, p.131).

An example of using Ada's information hiding (and data abstraction) would be
to implement a package that defined a linked list structure. Only those
details required by a user of the linked list package would be provided in
the package specification (data abstraction), e.g., the operations allowed
on the linked list. The im~plementation, though, of the linked list would be
hidden inside the package body. The user of the packag(does not need to
know how the linked list is implemented, therefore, information on its
implementation is hidden from the user.

The understandability of systems is enhanced "when, at each level of
abstraction, we permit only certain operations and prevent any operations
that violate our logical view of that level" [Booch 1987B, p.33]. Hiding
information about implementation details of subprograms in package bodies
offers various benefits. These include protecting the integrity of the
subprograms from undue alteration by user's of the subprograms. Also it
allows a user of the subprograms specified in the package specification to
think in a higher i.evel of abstraction rather than being inired in the
subpr m' inplementation details. Thus, this sound software engineering
technique can promote an Ada TCB system's design, implementation, and
ainLtenarKe.

B-10

APPEND'->=
Benefits of anr Potential Deterren- t:.
Usarn Aaa an- Developing Systes

2.1.3 Modularity and Localization:
Modularity provides the mechanism for collecting logically related
abstractions. It deals with how the structure of an cbject can make the
attaiment of some purpose easier. Modularity is purposeful structuring,
which is usually achieved in a large system by decmposing the system top-
down with modules that are either functional (procedure-oriented) or
declarative (object-oriented) [Booch 1987B, p.34]. It is composed
preferably of existing reusable bottc-up software components. 'This
structuring, should be performed to minimize the coupling between modules
(i.e., minimizing dependencies between modules) and to strengthen the
cohesion within modules (i.e., the conponents of a given module are
functionally and logically dependent) [Booch 1987B, p.34].

Localization is the collecting of logically related computational resources
in one physical module that is sufficiently independent of other modules.
Localization thus helps to create modules that exhibit loose coupling and
strong cohesion.

The principles of modularity and localization directly support
modifiability, and understandability [Booch 1987B, p.34). Any given module
should be understandable and relatively independent of other modules.
Design decisions localized in given modules limit the effects of a
modification to a small set of modules. This directly supports TCB
development in two ways. First, all the code related to a particular
purpose, e.g., discretionary access control, is localized which aids in the
understanding the inglementation. Also, a change in the inplmentation
should not propogate beyond the local modules. Thus, the use of
modularization that limits the interconnections among program modules, and
the localizing of logically related resources into modules are sourd
software erqignering techniques that can p-rmote an Ada TCB system's design,
implementation, and maintenance.

2.1.4 Dynamic Storage with Access Types:
Dynamic storage is a pool of memory, or heap, that is used for storing data
whose demand for memory varies during program execution. Despite the
problems associated with dynamic storage and Ada's access types discussed
below, it is a useful mechanism that can provide a convenient and flexible
means of managing memory when the need for memory is constantly changing.
Though Ada also provides an autoatic garbage collection facility, this

heap when the memory is deallocated.

The security of a TCB's dynamically stored data that is about to be
collected bly this garbage collection can be protected by deleting the data

13-f1

APY 2fY:Y r
benef'ts of and :-.-entia Deterren-s tc
UsMn c Aa -r Levelopin Systems

just before it is collected as garbage. That is, sensitive data that may be
accessed by an unauthorized user or subject must be removed from memory

before the memory is deallocated. Also memory should be scrubbed just
before it is dynamically allocated with Ada's ne statement. Note that
these additional checks will impinge on system performance. It would be
desirable to include in the next revision of Ada (Ada9x) a predefined pragma
that directs Ada compilation to include code to scrub dynamically allocated
and deallocated mamory after acquiring it from and returning it to the heap
respectively.

2.1.5 Carwnrret Programing with Tasking:
In contrast to other langumges Ada incorporates its concurrent pogmmiing
mechanism, namely, tasking, as an integral part of its definition.
Concurrent processes, in particular, tasks, are processes that may execute
in parallel on multiple processors or independently scheduled processes on a
single processor. That is, they involve the simultaneous, or timeshared,
execution of processes. Tasks may interact with each other, and one task
may suspend execution pending receipt of information frum another task or
the occurrence of an external event. Despite the problems associated with
concurrent programming and Ada's tasking discussed below, it is a useful
mechanism that likely is required for the effecti-re implementation of a TCB
system. Safeguards, as required by a TCB's class requirements, in
cCMnication between tasks must be enforced in the TCB system, e.g., with
discretionary access controls (e.g., access control lists) and/or mandatory
access controls (e.g., sensitivity labels). Communications between tasks
(e.g., rendezvous) should be logged in the audit trail.

2.1.6 Colilation of Specificaticns:
Ada provides the ability to compile package and subprogram specifications
during the design stage of system development. This aids in the early
checking of interfaces between packages, and with parameter consistency
between subprograms in the same package. The data structures are declared
in the specifications, and consistent use of data types can be automatically
checked during design. The use of Ada's capability to compile package and
subprogram specifications, therefore, allows early checking of a system's
desing and interfaces before the designers and iplementors get mired in
implementation details. Thus, the quality of the TCB is promoted by using
specification compilation.

2.1.7 Pausable Code:
The implementation of an Ada TCB system can be aided with the reuse of
evaluated code that has been demonstrated to sufficiently satisfy the

B-12

Be eeflts of anc rjotentia2 r oet p'-.nts tc
Uslrka ;.n Develop:nzg Svst-e.reL

secarity class of the given TCB. Ada's generic units are helpful in
creating reus able code. "Gee _rics provide a pwerful means by which aprogram my be 'factoriwed' in orapr "to shorten code, and reduce incidence

of errors, by avoidiryg redefining item which appear in several places in
the progam" (Nia.,-n and Wallis 1984, p.181). When code is reused the
nmber of errom in the code is reduced because errors in such code are
fixed when they are. identified. Additional time and effort is required
during the design phase of develcping zeusable code for a TCB system. The
additional tie and effort will pay for itself when the resulting reusable
code is used in multiple instances in the current TCB and future TCBs.
Thus, the reuse of evaluated code is a sound software engineering technique
that can prcawte the efficient production of an Ada TCB system's design,
implenentation, and mairtenace.

2.1.8 StarAadization and Portability:
Because Ada is standardized (by the Departmnt of Defense (DoD)), no subsets
or supersets of Ada are allaed. This standardization is assured by the
DoD's process of validation of Ada cmpilers. before any capiler can be
used on a DoD contract, it must be validated by passing a series of tests to
ensure that it .implenents the IR4 [ANSI/NXtLSTD-1815A-1983] precisely. This
aids the portability of Ada software among different types of computers. In
particular, an Ada TC system is more licely to be easier to port between
two different types of cmputers than if the TCB were developed in another
language.

2 Potential Deterrents to UsL-g Ada in Develop= TCB Systems

2.2.1 Shortocinas Inherent to Prc_ ain Ianguagaes in General in Developing
TCb System

The following featares are typically available in programrning languages. Their
use poses potential deterrents to the security of TCB systems.

2.2.1.1 Static Storage:
Static storage, such as local variables and arrays, are typically provided
in programming languages. Men a portion of static storage is no longer
needed during the execution of a program, it may still contain data to which

static storage, that is no longer needed, should be scrubbed.

B-13

benef:ts of an: Pote-ial Deterrents tc
Osir- Aab ar Deveaopi.ng Systems

2.2.1.2 Dy'namic Storac>:.
Dynamic storage, as discussed above, is a convenient way of managing a given
system's continually varying demands for memory. Dynamic storage is
typically used to implement such constructs as linked lists and queues.
This introduces the possibility that sensitive data may be accessed by an
unauthorized user or subject when it has not been removed from newly
allocated or deallocated memory.

2.2.1.3 Input and Output:
For any TCB that has input and output capabilities, it must not allow an
unauthorized user or subject to gain access to the TMB and its data. For
exapple, users must be prevented from accessing disk files or tapes that
they are not authorized to access. Also, the use of security sensitive
terminals must be restricted to those users who have authorization to use
the terminals. The security of the TCB's input and output ftnctions should
be provided with discretionary access controls (e.g., access control lists)
and/or mandatory access controls (e.g., sensitivity labels). All inputs to
and outputs fran a TCB should be logged in the audit trail.

2.2.1.4 Glckbal Variables:
Global vai'i:.blez -or partially global variables, e.g., in FORIAN C40N
blci?) ace a ccdunfent means oi-p-assing data between different parts of -a
system. The use of global variables causes difficulty in tracing
modifications to the variables. Thus, the security of the data is more
difficult to regulate in a TCB.

2.2.1.5 Cmxxurent Processing:
As discussed above, concurrent processing involves the simultaneous, or
timeshared, execution of processes. The communications between the
concurrent processes may allow the Lntroduction of covert channels. If
multiple processes are executing concurrently, then one process could detect
the extent of demands being placed on system resources by the system's
responsiveness to the process's demands. For example, a process might be
able to execute a series of subprograms in a given amount of time when it is
the only process executing. The amount of time to execute the same set of
subprograms might be much greater when several processes are executing. By
monitoring the time required to execute its on subprograms, this process

of covert channel is heightened by concurrent processing, the increase Ln
performance warrants that concurrence be used with caution rather than be
totally avoided. The security of communications between concurrent
processes should be managed with appropriate discretionary access controls

B-14

kPPD.-D: -
Benefits of and Potential Dete-rnts tc
Using Aua in Developng Systems

(e.g., access control lists) arni/or :rktnatory access controls (e.g.,
sensitivity labels). Cammunications between tasks (e.g., rendezvous) should
be logged in the audit trail.

2.2.1.6 Go Tb Stateilents:
Go To statements provide the means for a program to transfer contr il, n an
unstructured mmner, of its operation elsewhere in the program. Lw lrger
the module, the more potential problems that Go To statements .. ai pr.sent.
In particular, indesired redirection of program execution Tra, '- zcrled
and be hard to track. Because this transfer of control may bw 'nr-gulateA,
ensuring the security of a TCB system is very difficult. .1s , .ost ost
such as Ada, provide more structured control structures (e.g.. ir'Y an- . Ile
loops) that make using Go To statements unnecessary.

Rwple: This example illustrates unstructured t.-ansfer of control of
program execution by Go To statements.

<< Backward Label >>

Many lines of code!

goto Forward _Label;

goto Backward _label;

Many lines oE code!

<< Forward Label >>

2.2.1.7 interrupts:
Interrupts provide asynchronous means of altering program execution so that
an external event can be handled by the system. This may allow the handling
of an external event so that an unauthorized user or subject is able to gain
access to a TCB and its data. Interrupts should be managed with
discretionary access controls (e.g., access control lists) and/or mandatory
access controls (e.g., sensitivity labels). interrupts should be monitored

:--j l i-'l 11 '"t tral.1 5

B-15

APPDD:): E,
Benef2ts of and Potential reterren tc
Using. Ada in Developinz Systes

2.2.1.8 lack of Modularity:
A primary advantage to modular systems is increased understandability; the
primary problem with a lack of modularity is a lack of understandability.
Failure to adequately modularize a TCB's implementation introduces several
problems in its develcpment and maintenance. In particular, lack of
modularity causes the system's design and implementation to be less
anierstaxable because the high-level abstraction aspects of the system are
obscured by the exorbitant amount of details in large modules. This lack of
understandability has an adverse effect on testing, because not all of the
module's functions and subfunctions can be easily identified and then
tested. Also, lack of modularity complicates testing because the typically
greater number of possible logical paths (i.e., transfers of control of
program execution) in large modules cause them to be more difficult to test
thoroughly than small modules, which have few possible logical paths. This
testing is further complicated by the use of Go To statements in large
modules. A lack of modularity has a great adverse effect on maintainability
also. Because a large module cannot be as well understood as a smaller
module, any ripple effect of a change to the module will be very difficult
to detect and control.

2.2.2 ShortcominQs Unique to the Ada LanIuaqe in Developing TCB Systems

This section details how particular constructs and features that may be
detrimental to the development of TCB systems are implemented in Ada. Although
these constructs and features introduce the potential for circumwenting security
attributes, their use may at times be necessary. Also, of concern is the effect
when multiple features in this list are used together. Such interactions are
discussed below with appropriate constructs and features. These concerns will be
addressed in the programming guidelines.

2.2.2.1 Static Storage:
Static storage is a portion of memory that is set aside at compile time and
whose size does not change during program execution. Objects of most Ada
data types use static storage. Statically stored data, like that in an
array, can generally be accessed more efficiently than data stored
dynamically in data structures consisting of access types. This is offset
by their potentially inefficient use of memory; this is particularly true of
arrays. It would be desirable to include in the next revision of Ada
(JAML-3Z a th -A t J9A. r- -AQ a- U.LJ *. 11..C -4AI~ ...J -.1.J __ -&., .A _ 1..." ' - -.AA" ..

that scrubs memory that is local to a subprogram or package just before the
scope of the subprogram or package is left during program execution, i.e.,
just before the visibility of the static (or dynamic) mamory is lost. These

B-16

Benefits of ani]-:entia Deterrents- tc
.Jsinc Aaa in Dxve.opng. Systems

conflLictilng needs, efficient execution versus efficient use of memory, are
particularly important for large data structures.

2.2.2.2 Dynamic Storage with Acess Types:
Access types are used in Ada to implement dynamic storage constructs, like
linked lists and queues. Thus Ada also is subject to the same problems with
securely handling dynamic storage that are associated with other languages.
"An implementation may (but. need not) reclaim the storage occupied by an
object created by an allocator, once this object has become inaccessible"
[ANSI/MIL-STD-1815A-1983).

In addition, Ada has the pragma CONTRO.L , which "specifies that automatic
storage reclamation must not be performed for objects designated by values
of the access type, except upon leaving the innermost block statement,
subprogram body, or task body that encloses the access type declaration, or
after leaving the main program" [ANSI/MID-S)TD-1815A-1983]. The use of this
pragma may allow unauthorized access to dynamic storage that is yet to be
deallocated. Also, "if an object or one of its subcaonents belongs to a
task type, it is considered to be accessible as long as the task is not
terminated". This presents the possibility that unauthorized access to
dynamic storage may be available between tasks.

2.2.2.3 Acticaticr Records
When program execuition leaves the scope of a library unit, the memory
containing its data is returned to the heap without being scrubbed.

2.2.2.4 Global Variables:
"Global variables" may be implemented in Ada either in a package
specification or a subprogram specification nr used as shared variazles
associated with tasks (which are established with the pragma SHARED). The
primary advantage of using global and shared variables is that some
efficiency in data transfer within the program is typically introduced.
This advantage is almost always offset by the probl(ms caused by using
global and shared variables. Using global variables in Ada poses problems
similar to using them in other languages, as discussed above. Ensuring the
security of data "shared" among tasks is particularly difficult because the
flow of program control is harder to trace when tasking is involved.

SC ~ ~ ~ ~ ~ ~ tS4 -n d r, 1S

incorporates global or shared variables.

Emaple: This exanple illustrates global variable scope/visibility deterrent

in a package specification. That is, any package or subprogram

B-17

Benefts of and Potentia Deterrents t:
Iusin Ada ;r, Deveioping Systems

that withs package HighlyVisible Package can access and thus
modify GlobalACLVariables in a manner that is difficult to trace.

with Access ControlList TypesPackage;
packmp Highly Visible Package is

GlobalACLVariables : AccessControlListTypesPackage.
Named Object_RecordType;

end Highly VisiblePackage;

2.2.2.5 Omicurrent Programing with Tasking:
Tasking is Ada's means of implementing concurrent programming. Tasks and
entries have three attributes as specified in the IUM: T'CAIABIE,
T'TEINAED, and E' OUNT. The use of these dynamic attributes enables the
passing of information in a manner that is difficult to comprehend. Their
use may, therefore, open covert channels. The cmunications between tasks
may also allow the introduction of covert channels. In addition, a tasking
implementation may introduce the problems with dynamic storage and global
variables discussed above.

Shared variables are a convenient means of passing data between different
tasks in a system. Shared variables, associated with tasks, are established
with the pragma SHARED. The primary advantage of using shared variables is
that some efficiency in data transfer within the program is typically
introduced. This advantage is almost always offset by the problems caused
by using sh4 red variables. Ensuring the security of data "shared" among
tasks is particularly difficult, because the flow of prograr. control is
harder to trace when tasking is involved. Therefore, the security of an Ada
TWB system is complicated when it incorporates shared variables. When a
task is terminated the memory containing its data is returned to the heap
without being scrubbed.

Example: This example illustrates shared variable scope/visibility deterrent
in a package specification. That is, any ta.-' in any package or
subprogram that withs package Highly Visible_ .Package can
access and thus modify SharedACL Variables - inner that is
Airnl Fi~l- -n + t _ce.

with AccessControlList TypesPackage;
package HighlyVisible TasksPackage is

B-18

Benefits of and Potential Deterrents tc
bsim Ada an [evelopinc Syst-eno

SharedACLVariables : AccessControlList TypesPackage.
Named ObjectRecordType;

- pra SHARED is not currently supported in VAX Ada.
pragma SHARED (SharedACLVariables);

- fboth Resource_A_Task and ResourceB Task and any other task .in
- another package that withs package HighlyVisible_Package has
- access to Shared ACL Variables!

task Resource A Task is
entry Getfrc mResourceB;
entry Send to ResourceB;

end ResourceATask;

task ResourceB Task is
entry Get frao ResourceA;
erxy Send toResourceA;

end Resou-ce_B_Task;

end HighlyVisibleTasksPackage;

2.2.2.6 Use Clauses and Re elarations:
Ada's "use clause achieves direct visibility of declarations that appear in
the visible parts of named packages." Ada's "renaming declaration declares
another name for an entity." The use of the use clause and renaming make
identifying the origin of an invoked subprogram difficult. The impact on
testing is that the specification and definition of the invoked subprogram
are not accessible to a tester. lso, a similar effect, which is equally
adverse, .curs in maintenance, when it is difficult to identify the origin
of the invoked subprogram.

Examples: These examples illustrate the cbfuscacion introduced by the
use clause and renaming declarations. The examples of the
use clause and renaming declaration follow the initial declaration
of package Generic_AccessControlList ManagerPackage, which is a

generic

B-19

Benef-its of and Potential Deterrents to
Using Aaa in Developinc Systems

type Name_Type is private;
type ACL_RecordType is private;

package Generic.AccessControlListManagerPackage is

pro-edure Get_ACL Record
(Name : in Name Type;

ACLRecord : out ACLRecord Type);

end GenericAccess_ControlList ManagerPackage;

with AccessControl_ List Types Package;
with MandatoryAccess_Control Types Package;
with MandatoryAccessControl Manager Package;
with Audit Trail ManagerPackage;
package body GenericAccessControl_ListManager_Package is

- The user can. gain only indirect access to instantiated
- access control list through the subprograms declared in the
- package specification. Thus the access control list data
- structure is hidden from the user of this package. The
- typical list manipulation operations (e.g., as Lllustrated
- by Booch 1987A and Feldman 1985) are only provided in the
-- package body.

- Typical list manipulation operations

procedure Get ACL Record

ACL_Record: out ACL RecordType) is

B-20

Benef:ts- of ane o-zential Deterre.n'- tc
Usrnz Ada in Deveorim Systes

begin -- GetACLRecora

- Sequerne through the access control list data structure
- using the typical list manipulation operations to locate
- and get the indicated access control list record.

end GetACLRecord;

end GenericAccessControl_List Manager Package;

Exmple 1: Obfuscation introduced by the use clause

with Basic_ TCB Types Package;
use BasicTCBTypesPackage;
with AccessControl_ListTypesPackage;
us, AccessControlList_ Types_Package;with Mandatory Access Control Types Package;
with GenericAccess_ControlList Manager_ Package;
generic

tpe Password_7ype is private;

package GenericUserIdentificationand_AuthenticationPackage i-

- Instantiation of GenericAccessControl_ListManagerPackage
package Named Objects_Access_ControlList_ MnagerPackage is ne

GenericAccessControl_ListManagerPackage
Name Type => Name of Object Type,
ACLRecord Type => NamedObjectRecordType);

use NamedObjects AccessControlListManagerPackage;

- The locations of the declarations of Name of ObjectType
- and NamedObject RecordType are now lost due to the

B-21

Benefts of arn Potentia] Deterrents tc
Usinr. Ada ir, Deve. opinc Systems

-- use clauses, use Basic TCBTypes Package an-
- se Access_Control_List_TypesPackage, respectively.

procedure Check Password
(Password : in Password Type;

Iocal MAC Record : in
ManatoryAccess_Control Types_Package.

MACRecord Type)

end GenericUserIdentificationandAuthenticationPackage;

with Audit Trail ManagerPackage;
package body GenericUserIdentificationandAuthentication_Package is

procdure Check Password
Password : in PasswordType;
Local MAC Record : in

MandatozyAccessControlTypesPackage.
ReC_Recrdype_) is

Name : Name ofObject Type;
ACLRecord : NadObjectRecordType;

begin -CeckPassword

- The location of the specification of GetACLRecord
- is now lost due to the use clause,
- use Named Objects AccessControlList ManagerPackage!

Gt_ACL.ewi (Nape, ACTh,_Perrd)

end CheckPassword;

B-22

APPM-c). B
Benefits of and Ptemntia] Deterrn-cs tc
Us.Lng Ma ir Deveiopin9 Systems

end GenericUserIdentificationandAuthenticationPackage;

Example 2: Obfuscation introduced by renaming declarations

with Basic TCB_ TypesPackage;
with AccessControl_List TypesPadoge;
with MandatoryAccess_ControlTypes Package;
with Generic_Access_Control_ListManager_Package;
generic

type PasswordType is private;

pacW e UserIdentificationandAuthenticationPackage is

procedure CheckPassword
Password : in Password_.Type;
Local FAC Record : in

MandatoryAcxessControlTypes_Package.
MACRecord Type);

end UserIdentification-andAuthenticationPackage;

with Audit Trail ManagerPackage;
package body UserIdentificationandAuthenticationPackage is

- instantiation of Generic AccessControlList Manager Package
package Nanx ObjectsAccessControlListManager Package is new

GenericAccessControl List Manager Package
(Name Type => Basic_ CBTypesPackage.

Name of Obectype,

ACLRecord Type => Access_ControlList TypesPackage.
NamedObjectRecordType);

B-23

Ber ef: ts of an -P'tent-a] Deterren--s tc
I)sin kaa 1r, De,'E.. pm Systemns

procedure GetAccessControlListRecord;
Name : in BasicTCBTypesPackage.

Name ofObject_ Type;
ACLRecord : out Acoess ControlList Types Package.

NamedCbjectRecordType)
renames Named ObjectsAccessControl_ListManagerPackage.

Get_ACL_Record;

proceure ChecPassword
(Pa ssword :in Password Type;
localMAC Record : in

Mandatory AccessControlTypesPackage.
MAC_Record Type) is

Name : BasicTCB_TypesPackage. Name of Object Ty-e;
ACLRecord : AccessControl_List TypesPackage.

NamedObjectRecordType,

begin - eck Password

- The location of thc spe. "ficat;.on of
- Get AccessControlList acorm,
- i.e., NamedObjects AccessControlList Manager. Package.
-- Get ACL Record is now lost. due to the renaming declaration!

GetAccessCon-zrolList Record (Name, ACL_Record);

end CheckPassword;

end UserIdentificationandAuthenticationPackage;

2.2.2.7 TJkxIecked Prcnramrirng:
Ada provides two u'nchecked programming features, unchecked storage
deallocation and unchecked type conversion. "The predefined generic library
sibprograms UN ECKED_DALOCATION and UNIEC= CONVERSION are used for
unchecked storage deallocation and for unchecked type conversions"

B-24

Benefits of and Protential Deterrents t,^
Usir Am ir, beveiopLnq Systen

[ANSI/ML-STD-1815A-!983). Some Ada cmpilers, such as the DEC VX Ada,
allow uncheked conversion with private and limited private types. This
allows the benefits of information hiding provided by theses private types
to be circumvented and thus allows the introduction of security breaching
devices, such as covert channels. The use of urchecked storage deallocation
may allow an unauthorized user or subject to gain access to the storage.
The potential problem associated with its use are similar to those
associated with the use of dynamic storage. Using unchecked type conversion
can defeat the stxong typing capabilities of Ada. This irpedes testing the
security of an Ada TCB.

ExWamle: This exuple illustrates the deterrent intoduced by unchecked type
conversion of a private type, in particular, in VAX Ada. The
violations of the private type, Key Type, are indicated by the
inline ccnents in the prooedure Test Key.

package Key MangerPackage is
type Key Type is private:
NullKey : ounstant Key Type;
procedure GetKey (K : out Key p2pe);
function "<" (X, Y : KeyType) retrn BOOLEAN;
function "1+"1 (X, Y : Key Type) refbln Key-Type;

private
type Key Type is ne NAnTRAL;
NullKey : cnstant Key Type := 0;

end Key Manager_ Package;

package body KeyManagerPackage is

LastKey : Key_Tpe := 0;

procedure GetKey (K : out Key Type) is
begin

lastKey := last Key + 1;
K := Last Key;

ed Get Key;
.,,,,.,,..., V ,J ,* . _.,. .- ,.....) 7'M 4.I

-A~~ir f< , V .Ae Tp ,"

begin
retun NAMIAL (X) < NAMAL (Y);

function "+" (X, Y Key Type) return Key Type is

B-25

AJIFU) E
Lbenelts o.' a,,t, I-ntenu-,-al Dte--rroo:
USLMn A-lair -:aveiopl.n Sys'ZenC

begin f

rernKey-ype (NATUJRAL (X)+ NATUJRAL (Y)

end Key anagerPackage;

with Key 0anager P*ackage;
w 'th UNCHECKEDONVERSICN;
procedure Test _Key is

funicticn 3e otn si

SLUCRCE => Key_ Manager Package. KeyType,
TA% 7-rf => ITE

funr-icra Tappered withKMy Ctent, is new UNCRECMD CNERION~
SOUJRCE => INTEGER, _Pot

D~T=> Key Manager Package. Key Tlype)

Key Value :KeyManager Package. Ney Tlype
:-Key Mlanager Package. NullI Key;

KeyInteger : lINTEGER 7;
Key Relation : BOLAN :=FAL-SE;

begin - Test -Key

- 1. Test, unchecked conversions.

- 1. a The follcwirq statement i.llustrates unchecked ,:=version
- of an object of D'?1MZR type ar4 its assignuent to
- Key Value, Twich is a private type!

Key_-ManagerPackage. Get _Key (Key Value)
KeyInteger := Key Content (S => Key Value)

- . b The folluaing statement illustrates unchecked conve-ion
of an object of IlMEIER type and. its assigrment to

- KeyValue, which is a private type!

Key.Integer = 12;
Key Value :=Tampered with Key jContent, (S => Kiv itge)

B-26

Eienef.,ts ofA anr- Ptentiaa Deterrets tc
ncAda ;.r, Dve~ ozzn-.v~e

-2. Test expressior ccupatibility with unchecked conversions.

-2. a Tes-t expression canpatibility of an object of
-KeyM!4ager~ackage.Ke ype and an object of IRIMM
- type.

Mey-integer := 2.0;
Key_!MF-agerPackage. Get,_Key (Key_Value)
KeyInteger :=Key__Integer + Key content (S => Key Value)

-2. b Test expression ccamatibility of an object of INTIM
-- type axxd an obj ect of Key MIanager .Package . Key TEype.

Key M4anagerPackage. Get;_Key (Keyalue)
Key Integer := 20;

decare
function 11+1 (X, Y : Key MIanager Package. Key Type) return

Key Manager _Package. KeyType reames
KeyManager _Package. 11+11;

begin

Key Value :=Key Value +
Tamerq with KeyContent, (S => Key Inter)

end; - block

- 3. Test parameter canpatiility with unchecked conversions.

- 3. a Test parameter coapatibility of an object ofA BITD=3
- type to an object, of Key Mlanager _Package. KeyType.

Key-Integer : = 30;
Key M~anager_Package. Gst_Key (Key Value)
Key _nteger : = Key _nteger * Key Content (S => Key Value)

-- 3.b Test na.-ameter ccxrnatibility of an objeclt of
-- Key_!Manager _Package. Key Type to an object of niTDEER
- type.

KeyRelation :=FALSE;

B-27

Benelits of and otten-ial Deterrents t,
Usz')C Aia u-. Devej opuirz Systems

Key_ManagerPackage. Get_Key (KeyValue);
KeyInteger := 40;
KeyRelation :=

Key 4anager_Package. 6,<,, (KeyValue,
Tampered withKey content (S => Key Integer));

Old TestKey;

2.2.2.8 ExopOcns:
The major difficulty with exceptions [Tripathi] in the Ada language from the
point of view of software development of TCBs is the dynamic manner in which
exoeptions are propagated, and the resulting ccplexity that derives from
attemting analysis during testing of programs. This cmplexity is
furthered by the fact that exceptions are propagated "as is," which could
cause an unhandled exception to propagate from several levels down to a
routine that has no understanding of the meaning of the exception. A stack
package with a private iplementation that raises INDEX ERROR in the
environment of the calling procedure would be totally unexpected and either
unhandled or mishandled.

Through adequate containment of the exceptions - conversion of unhandled
exceptions to some RUINE_RROR on exit from a block (within a package or
not), or explicit use of others clauses at all possible functions (not a
convenient approach) - the complexity could be reduced.

Another matter of concern with respect to exceptions is due to the non-
specificity of the language with respect to modes of parameter passing. If
a compiler passes an in out parameter by copy on entry and on exit, the
actual pxarameter may never be updated if the routine raises an exception,
whereas if the parameter is passed by reference, changes to the actual
parameter may change the passed forma! parameter, and the value will have
been updated in the presence of a raised exception.

In addition using pragma SUPPRESS prevents the raising of exceptions for
selected checks, which can serve to monitor the proper execution of the
program during untiluw Tus, this pragma also can adversely affect the TCB
security. It shaIld also be noted that Ada code generated when using pragma
sMPRIS cannot be trusted to work as expected, because Ada ccrpilers
currently are not validated when pzagma SUPPRRSS is used.

Exanmles: These eXaiMles illustrate the deterrent introduced by transfer of
control of program execution by exception haldling. In the first
example, an exception raised during execution uf a deeply-nested
subprogram can cause control foiw to be unpredictably altered. In
the second example, an exception is raised during execution of a

B-28

bonefits of and Pmtential Dete-rents tc,
-.sin. Ar. in Deve.oping SYstem

task which is handled by another task, thus, control flow also can
be unpredictably altered.

Ebauple 1: Deterrent introduced by transfer of ontrol of program execution

by exception handling thirough several nested subrogrant

package HandleNestedSubprogramsExceptions Package is

procedure HandleExceptions;

end Handle_Nested Subp -sExct ionsPackage;

with TEXT 10;

package body HandleNestedSubprogramsExcptions Package is

PasswordisInvalid : exception;

prcedure CheckPassword is

Password isIncorrect : BOLEAN := FAlSE;

begin - eckPassword

if Password is Incorrect thme

raise Password isInvalid;

end if;

end CheckPassword;

procedure HandleExceptions is

begin - HandleExceptions

Check Password;

B-29

APPEDIX B
Benefits of and Potential Deterr-nts to
Using Ada in Developing Systems

when Password is Invalid =>
TEXT_IO. Tim ("The password is invalid!");

when others =>

TEXT 10. P1T ("We have a problem here!");

end HandleExceptions;

end HardleNested Subprograms_ExceptionsPackage;

Ewciple 2: Deterrent introduced by transfer of control of program execution

by exception handling across tasks

package HarndleExceptions_AcrossTasksPackage is

proceure CheckPassword;

end Handile_ExceptionsAcrossTasks_Package;

with TEXT 10;
package body Handle_ExceptionsAcrossTasksPackage is

PasswcrdisInvalid : exception;

task Raise Invalid PasswordException Task is

entry CheckPasswordValidity;

end RaiseInvalidPasswordExceptionTask;

B-30

APPEh"DIX B
Benefits of and Potential Deterrents to
Using Ada in Developing Systems

task Handle-EoeptionsTask is

entry HandleInvalidPassword;

end Handle_ExceptionsTask;

procedure CheckPasmord is

begin -- eck Password

RaiseInvalidPassword_ExceptionTask. CheckPasswordValidity;

Handle_ExceptionsTask. Handle_InvalidPassword;

end Check Password;

task body RaiseInvalidPasswordException Task is

Password is Incorrect : BOOIEAN := FALSE;

begin - Raise InvalidPassword_Exceptions_Task

accet Ceck_Password Validity do

if Password is Incorrect then

raise Password is Invalid;

B-31

APPENDID B
Benefits of and Potential Deterrens to
Using Ada in Developing Systems

end if;

nd Check_PasswordValidity;

end RaiseLnvalidPasswordExceptionTask;

task body Handle_ExceptionsTask is

begin - Handle_ExceptionsTask

accept HandleInvalid-Password;

ewcetian

wben Password is Invalid =>
TEXT_IO. yr_LINE ("The password is invalid!");

when others =>
T=XT_10. PUT LINE ("We have a problem here!");

end Handle_ExceptionsTask;

end Handle_Exceptions_AcrossTasksPackage;

2.2.2.9 interface with other languages:
Ada provides the means to interface with other languages using the pragma
INTERFACE. Using multiple high-order languages, or using assembly language
with a high-order language, makes a system more difficult to understand.
The difficulty here is not with the pragma INIERFACE per se, but rather with

B-32

APPENDIX B

Benefits- of and Potential Deterrent- -o
Using Ada in Developing Systems

using more than one language in a system. Ada code has more potential of
being self-documenting than other high-order languages because its syntax is
logical and similar to English. Also, Ada allows the use of a sufficient
number of characters in its identifiers to make them more readable and
understandable than the identifiers of other high-order languages.

The difficulty with allowing machine code insertions in developing TCBs is
the inability to correlate the specification of the machine code
instructions with the intended abstract behavior at the Ada language level.
If it is possible to specify the intended behavior, it would likely be
preferable to program in Ada; if not, attempting to use such i-zertions
would stymie the development of TCBs.

Example 1: This example illustrates interfacing Ada with the prograrming
language C.

pragma INTERFACE (C, rm); - obviously, the reference monitor

Example 2: This example illustrates interfacing Ada with DEC VAX-Il's MACRO
assembly language.

pragma INTERFACE (MACRO, TCB); - only an Ada shell is required

2.2.2.10 Representation Clauses and Inplementatin-Dependent Features:
Ada provides means to directly interact with the underlying hardware and
operating system using its representation clauses and implementation-
dependent features. As with interfacing with other languages, the
beneficial Ada featuares are no longer available in these parts of the
system. Using representation clauses and implementation-dependent features
may allow penetration of the TCB thrugh the underlying hardware or
operating system, which clearly could allow compromising the security of an
Ada TCB system.

Example: This example illustrates the deterrent introduced by an interrupt
defined by an address clause. Note that address clauses are not
currently supported in VAX Ada.

procedure Penetrate Memory Space is

Char : CHARACR;

B-33

APPEND'_X B
Benefits of anr Potent iaL Deterren"ts to
Using de in Developing Syscems

task Input_Penetrator_Task is

pragma " DRITY (4);
- must have at least the priority of the interrupt

entry Get Character franPenetrator InputAddress
(char : otaiAAcr);-

entry SaveHardwareBufferCharacter;

- assuming that SYSTEM. ADDRESS is an INTEGER type
for Save HardwareBuffer Character use at 16#0020#;

end Input_Penetrator_Task;

task Output_PenetratorTask is

pragma PRIORITY (4);

- =ust have at least the priority of the interrupt

entry DepositCharacterintoHardwareBuffer;

entry Put Character into_Penetrator OutputAddress
(Car : in CHAPACER);

- assuming that SYSTEM. ADDRESS is an 1MGER, type
for DepositCharacter intoHardware_Buffer use at 16#0024t,;

end Output_Penetrator_Task;

task body InputPenetrator_Task is

MaxSize of InternalInputBuffer : cxnstant POSITIVE
:= 64;

InternalInputBuffer
array (1 .. MaxSize ofInternal_InputBuffer
of CHARACTER;

Input_B ufferPointer : POSITIVE = 1;

Output_Buffer_Pointer : POSITIVE := 1;

Buffer Count : INTEGER := 1;

B-34

APPD;2\X E
Bene.:ts of and Potential Deterrents to
Usim Ada in Developing Syst'ms

Hardware Character Buffer : CHRACTER;
for HardwareCharacter Buffer use at 16#010O0;

b -in - Input Penetrator_Task
Ioap

select
when Buffer Count > 0 =>

accept Get_ Caracter_franPenetratorInput Address
(Char : out iAACR) do

Char := InternalInputuffer
Output Buffer Pointer);

end GetCharacterfrcnPenetrator InputAddress;

Output_Buffer Pointer :=
OutputBuffer Pointer rood

MaxSizeofInternalInputBuffer + 1;

Buffer Count := Buffer Count - 1;

or
when BufferCount <

MaxSize-of InternalInput_Buffer =>

accept SaveHardwareBufferCharacter do

InternalInput_Buffer
InputBuffer Pointer) =

HardwareCaracterBuffer;

end SaveHardwareBufferCharacter;

InputBuffer Pointer :=
Input tufferPointer m

MaxSize of InternalInputBuffer + 1;

Buffer Count := Buffer Count + 1;

end loop;
end InputPenetrator_Task;

B-35

Benefits of and Potentia2 Deterrents :c
Usng Ada pin. Deveiopzmg Systems

task body OutputPenetrator_Task is
MaxSize of Internal_OutputBuffer : cxnstant P3SITIVE

64;

InternalOutputpuffer
array (1 .. DMax_Size ofInternalOutputBuffer

of CHARACTER;

InputBufferPointer : POSITIVE 1;

Output_BufferPointer : POSITIVE = ;

Buffer Count : INTEGER := 1;

Hardware Character Buffer : CHARACTER;
for Hardware Character Buffer use at 16#0200#;

Hardware_CaracterBuffer isEPty : BCOLEAN := TJE;

begin - Output_Penetrator_Task
loop
select

accept Deposit-CharacterintoHardwareBuffer;

if Buffer Count > 0 then

Hardware Character Buffer
Internal_OutputBuffer

OutputBuffer_Pointer);

OutputBufferPointer
OutputBufferPointer rod

MaxSize ofInternal_(utput_Buffer + 1;

Buffer Count := Buffer Count - 1;

else

HardwareCharacterBuffer is EnPty := TRUE;
end if;

or
when Buffer Count <

Max_Size ofInternalOutput_Buffer =>

B-36

Benf:s of an2 Potential Deterrents c
Us-in Aia -,, Developing Systems

acoept
Put _Caracter into PenetratorOutputAddress

(Car : inCARACnER) do
InternalOutput _ffer (

InputBufferPointer) := Char;

end Put_CharacterintoPenetrator OutputAddress;

Input_Buffer Pointer :=
Input _BufferPointer mod

MaxSize ofInternal OutputBuffer + 1;

Buffer Count := BufferCount + 1;

if Hardware_CharacterBuffer is Empty then

Hardware Character Buffer
Inten~ilOutput Buffer

OutputufferPointer);

Output_Baffer Pointer :=
Output BufferPointer =:d

MaxSize ofInternalOutputBuffer + 1;

Buffer Count := Buffer Count - 1;

HardwareCharacter_ffer ispty TRUE;
end if;

end select;
end loop;

end utputPenetratorTask;

begin -Penetrate Memory-Space

Irput enetratorTask.
GetCharacter from Penetrator Input Address (Char);

OdtputPenetratorTask.

Put_Character intoPenetratorOutput Address (Char);

B-37

A.PPD MD).

Bene 'fts o, an45 Poten-_ial Deterrnen4 -- t c
Using A~a in Develo-.ng Systems

end Penetrate Memory Space;

2.2.2.11 Sysm timing E package CAEINDAR:
Ada provides access to system timing throa. the package CALENDAR. If the
accuracy of the system timing available through the package CALENDAR is
inadequate for the needs of the TCB, then its security may be canpranised
(e.g., if the TCB has to run under real-tine timing constraints). That is,
the system timLng available from pac CAIENDAR may not correspond
precisely to the system clock. It should be noted that only system timing
is available from package CALENDAR, which would be required for time
stamping. To get timing fran an external clock a new package must be
developed, probably with representation clauses, which introduces their own
complications, as discussed above. The potential dangers of this
relationship between system timing and package CAIENDAR should be the
subject of future research with Ada runtime environments.

2.2.2.12 Tai1oring and OCifigurirxg Ada Ompiler and Rmtiiz System:
Tailoring of an Ada compiler or runtime system is the actual modification of
the code of the Ada ccpilation system [Baker 1988) at which time validation
of the Ada compiler ay be conromised and Trojan horses may be inserted.
Configuration of an Ada compiler or runtime system is the reselection of
compiler options and parameters provided by the Ada compiler vendor.
Configuration may allow a compiler or runtime system to run conveniently on
various host and target combinations. Unsafe selection of options and
parameters may open paths for the TCB to be penetrated. Thus, modifying the
Ada compiler or runtime system of a TCB by tailoring or configuring may
compromise the security of the TCB.

2.3 Benefits of Using Tools to Develop Ada Software for TCB Systems

The following information on tools is taken liberally from Technology Training
Corporation's seminar, Developing Ada Systems, presented by Mr. Jerry Mungle
[Mungle 19881.

B-38

Benef2ts of and Potentia2 Deterrents tc
Usin. Ada i. Deeveiopi Systems

2.3.1 Desirable Features of Tools for the Development of Ada Software for

The following features of software development tools aid the develcpment of Ada
software for Ada TCB systems. No existing tool has all of these features. A
highly desirable software development tool would meet the following reuirements:

- Support the full software life cycle (including the special needs
of real-time software develcpment) from requirements through design,
configuration management, and maintenance;

- Support various development methodologies, such as object Oriented
Developent, PAMELA [Cherry 1984] and Structured Analysis Development;

- Support. graphical design tools, e.g., Booch [1987A and 1987B] and Buhr
[1984) Diagrams, PAMELA, Data Flow Diagrams, Control Flow Diagrams, and
Structured Analysis;

- Support the generation of Ada Program (or Process) Design Language
(PDL) and perhaps Diana Source Representation;

- Support the generation of data dictionaries, process specifications,
and DOD-STD-2167A documentation;

- Support the generation of error reports;

- Have an Ada language-sensitive editor, a configurable Ada symbolic
debugger, and a configurable Ada pretty printer;

- Support the tracing of the satisfaction of security requirements;

- Be available on various machines, e.g., VAX, SUN, APOLLO, IEM AT, and
Macintosh.

2.3.2 Tools Available for the Development of Ada Software forTCBSytm

The folla-1,g tlsare availa-b-le for the develoment of -Ada systern. They do
not inherently insure the development of a secure system.

A. AdaGRAPH:
- It supports three methodologies: PAMELA, Object Oriented

Development, and Structured Analysis Development.

B-39

APPD;DIX B
Benefits of cncd Potential Deterrents -c-
Using Ada in De'veloping Systems

It provides Ada-specific support (one-to-one correspondence) ot
graphical design elemits to Ada.
It autaatically generates Hierarchical Process Graphs (HPG),
Software Arditecture Data Bases, Ada PDL plus task idiams, Module
Maps, and Data Dictionary.
It runs on PC XT and AT and VAX/VMS.

B. AdaGEN:
i- It supports Object Oriented Development.

- It provides Ada-specific support by drawing Booci diagrams,
drawing 'Buhr diagrams, and generating campilable Ada PDL from
diagrams.

- It runs on the PC and SUN cmputer.

C. TEAMWORK/Ada:
- It supports Ada Structure Graphs (Buhr graphs) and Structured

Analysis Development.
- It autoatically generates Ada code and DOD-STD-2167A documenta-

tion.
- It produces data flow diagrams, data dictionaries, process

specifications, control flow diagrams, state transition diagrams,
and state event matrices, decision tables, process activation
tables, structure charts, and entity relationship diagrams.

- It interfaces with documentation production tools.
- It provides mltiuser support on Apollo, DEC, Hewlett Packard,

IBM., and SUN.

D. BYRON PDL:
- It supports unlimited user-definable report production.
- It produces Ada PDL, Diana source representation, and DOD-STD-2167

documentation.
- It provides program configuration management.

E. AISLE and ADADL:
- It is a family of tools that provides project management support,

especially in the form of an extremely large number of reports.
These reports include type cross references, error reports,
canplexity reports, and structure charts.

- It produces Ada PDL and code, DOD-STD-2167A documents, and data
dictionaries.

- It provides an Ada code printer.
- It does not extend Ada.

B-40

Beref-ts of and Denta rt-errents tc
Usu-, Ada i, Drveiop7n Sys-ems

F. DCDS:
- It supports the Distributed Cmputing Design System methodology,

and it supports object oriented development and the spiral rodel
of software development.

- It specifically supports large, complex, real-time, distributed
systm.

- It supports the software life cycle fram system requirements
through integration and testing.

- Its process construction system supports buildir Ada code and
automatically generates Ada data declarations.

- It supports software cunfiguration management.
- It produces functional networks, regurments networks, Element-

Relationship-Attribute (ERA) Specifications, data flow diagrams,
N2 charts, and Ada PD)/code.

- It automatically generates DOD-STD-2167A documents.
- It runs on the VAX and SUN.

B-41

api of Aas J)sacie tc T _? Crltei-z

This section provides a mapping of Ada constructs that would be appropriate to
the implementation of the TCB structures and functions defined in the TCSEC. The
class B3 criteria are used as the template of the generalized TCB criteria
because they are the highest level f security criteria under consideration.
Also, the Ada constructs mapped to these criteria can siilarly be mapped to the
TCB criteria of lower security classes. The four = criteria subsections
considered are Security Policy, Accountability, Assurance, and Documentation.
For further discussion of the various topics, refer to Appendix A. All quotes
are taken from the TCSEC.

G %UZED TM CITERIA

"The class B3 TCB must satisfy the reference monitor requirements that it mediate
all accesses of objects, be tanperproof, and be small enough to be subjected to
analysis and tests. To this end, the TCB is structured to exclude code not
essential to security policy enforcement, with significant system engineering
during TCB design and implementation directed toward mini-izing its coplexity.
A security administrator is supported, audit mechanism are expanded to signal
security-relevant events, and system recovery procedures are required. The
system is highly resistant to penetration."

3.1 Security Policy

A security policy describes how users may access documents or other information.
It is the set of laws, rules, and practices that regulate how an organization
manages, protects, and distributes sensitive information.

3.1.1 Discretionary Access C Itrol

Discretionary access control provides a means of restricting access to objects
based on the identity of subjects and/or groups to which they belong. The
controls are discretionary in the sense that a subject with a certain access
permission is capable of passing that permission (perhaps indirectly) to any
other subject (unless restrained by mandatory access control). An enforcement
mechanism (e.g., access control lists) must allow users to specify and control
sharing of those objects and rast provide controls to limixt propagation of access
rights.

B-42

APPENDIX E
Mappinm. of Ada Usage tZ 7Z C:teri

Application of "-a Consti-uts and Features:

Enforcement medkinisms that consist of lists, such as access control lists,
can be created with linked lists and queues, using either static or dynamic
storage constructs (e.g., using arrays or access types, respectively).
Though linked lists and queues are more typically implemented using dynamic
storage cwnstzucts created with Ada's access types, which provide more
efficient memory usage, linked lists and queues created with arrays provide
more efficient execution. In addition, the lists can be represented by
abstract data types, which consist of Ada's strong data typing encapsulated
in packages. For further explanation of these constructs, refer to Section
2.0.

Tasking would be necessitated if concurrent processes are to be used in more
cmplex TCB systems where multiuser and multisubject requirements (e.g.,
simultaneously monitoring accesses to control lists by multiple subjects)
are present. For further explanation of these constructs, refer back to
Section 2.0.

Nonvolatile versions of major lists, e.g., access lists, need to be accessed
from disk or tape, which require input and output operations whose security
is protected with protocols that satisfy the class of the given TCB. For
further explanation of these features, refer to Section 2.0.

3.1.2 Object Reuse

Object reuse is the reassignment to some subject of a medium (e.g., page frame
disk sector, magnetic tape) that contained one or more objects. To be securely
reassigned, such media must contain no residual data from the previously
contained object(s). The TCB must assure that when a storage object is initially
assigned, allocated, or reallocated to a subject from the TCB's pool of unused
storage objects, the object contains no data for which the subject is not
authorized.

Application of Ada Onstructs and Features:

The reuse of objects involves the inagement of memior used for storing
objects. This may involve the management of dynamic storage as well as
static storage in a secure manner. Also, objects can be represented by
abstract data tvpes. which are implemented with Ada's packages and user-
defined data types. Tasking and shared variables would be required to
manage object reuse when concurrent processes are warranted for efficient
multiuser and multisubject TCB system operation. For further explanation of
these constructs, refer to Section 2.0.

B-43

APPEDIX E
Mapping of Ada Usage tc Crter:

..JLabels

A sensitivity label is a piece of information that represents the security level
of an object and that describes the sensitivity (i.e., classification) of the
data in the object. Sensitivity labels are used by the TCB as the basis for
mandatory access control decisions. They are associated with each ADP system
resource (e.g., subject, storage object) that is directly or indirectly
accessible by subjects external to the TCB, and they must be maintained by the
11CB. To import non-labeled data, the =IB must request and receive frm an
authorized user the security leve3 of the data, and all such actions must be
auditable by the TCB. Also, the TCB must enforce subject sensitivity labels and
device labels.

Application of Ada Constructs and Features:

Sensitivity labels can be treated as objects, which can be represented by
abstract data types. These consist of Ada's strong data typing encapsulated
in packages. The exportation of labeled information typically involves
input and output using secure protocols, which can also be represented by
abstract data types. Tasking and shared variables would be required to
manage subject sensitivity labels and their exportation when concurrent
processes are warranted for efficient multiuser and multisubject TCB system
operation. For further explanation of these constructs, refer to Section
2.0.

3.1.4 Mandatory Access Control

A mandatory access control is a means of restricting access to objects based on
the sensitivity (as represented by a label) of the information contained in the
objects and the formal authorization (i.e., clearance) of subjects to access
information of such sensitivity. It prevents "some types of Trojan horse attacks
by imposing access restrictions that cannot be bypassed, even indirectly. Under
mandatory controls, the syste assigns both subjects and objects speci.al
attributes that cannot be changed on request as can discretionary access control
attributes such as access control lists. The system decides whether a subject
can access an object by ccmparing their security attributes." [Gasser 1988, p.61]
Thus, a TCB must enforce a mandatory access control policy over all resources
(i.e., subjects, storage objects and I/O devices) that are directly or indirectly
accessible by subjects external to the TCB. All subjects and storage objects
must be assigned sensitivity labels that are a combination of hierarchical
classification levels and non-hierarchical categories, and the labels mst be the
basis of the mandatory access control decisions. Also, a TCB must be able to
support two or more security levels.

B-44

-. ?~NDiX B
Yappin of Ada Usage tC, CB rteria

Application of Ada Oo.rtrwts and Features:

The management of a mandatory access control policy is performed typically
with an implementation of the Bell and LaPadula security model that
regulates the security of accessing objects by subjects and the assignment
of sensitivity labels to enforce the policy. This requires classifications
of the objects that are to be protected by this policy. This may involve the
management of dynamic and static storage in a secure manner. Also, objects
can be represented by abstract data types, which are implemented with Ada's
packages and user-defined data types. Similarly, the policy could be
represented by a package. Tasking and shared variables would be required to
manage mandatory access controls when concurrent processes are warranted for
efficient iltiuser and multisubject TCB system operation. For further
explanation of these constructs, refer to Section 2.0.

3.2 Accountability

Accountability is the monitoring of access to and operation of a TCB system by
using identification and authentication of users requesting access to the system,
maintenance of trusted ccmiunication paths, and auditing of accesses to the TCB.

3.2.1 Identificaticn and Authentication

Identification consists of using unique identifiers that are associated with each
user (such as a last name, initials, or account number), that everyone knows,
that no one can forge or change, and that all access requests can be checked
against. The identifier is the means by which the system distinguishes users.
In particular, a TUB must require users to identify themselves to it before
beginning to perform any other actions that the TCB is expected to mediate.

Authentication consists of associating a real user (or more accurately, a program
running on behalf of a user) with a unique identifier, namely, the user ID. "The
system must separate authentication information (passwords) from identification
information (unique IDs) to the maximum extent possible because passwords are
secret and user IDs are public" [Gasser 1988, p.23). A TCB must maintain
authentication data that includes information for verifying the identity of
individual users as well as information for determining the clearance and
authorizations of individual users. It uses this data to authenticate the user's
identity and to determine the security level and authorizations of subject- that
are created to act on behalf of the individual user. The TCB must protect
authentication data so that it cannot be accessed by an unauthorized user. It

urast be able to enforce individual accoumtability by providing the capability to
uniquely identify each individual ADP system user. Also, it must provide the

B-45

z-% .ing. Of Ada Ilsaae t = Cr ter:a

=apa-.iAy of associatirng the aindvidua idn~aity wl-h al aud.tatde az-iora
taken by that individual.

Application of Ada Canstructs and Featurs:

The management of identification and authentication data involves using
corresponding abstract data types, which consist of Ada's strong data typing
encapsulated in packages. This management may also include using dynamic
storage as well as static storage in a secure manner. Similarly, the
identification and .authentication processes may be represented by packages.
Tasking and shared variables may be required to manage security data when
concurrent processes are warranted for efficient miltiuser and multisubject
TCB system operation. For further explanation of these constructs, refer to
Section 2.0.

3.2.2 Trusted Path

A trusted path is a mechanism by which a person at a terminal can communicate
directly with the TCB. This mechanism can only be activated by the person or the
TCB and cannot be imitated by unevaluated software. A TCB must support a trusted
communication path between itself and users for use when a positive TCB-to-user
connection is required (e.g., login, change subject security level).
Communication via this trust-d path must be activated exclusively by a user or
the TCB and must be logically isolated and unmistakably distinguishable from
other paths. The Trusted Path for a Class B3 TCB needs to allow bi-directional
access, fram user to TCB and from TCB to user.

Application of Ada onstructs and Features:

Trusted paths require secure Lnput and output comunication paths between
the user or subject and the TCB. Trusted paths can be treated as objects,
which can be represented by abstract data types. These consist of Ada's
strong data typing encapsulated in packages. Tasking and shared variables
may be reqaired to manage trusted paths when concurrent processes are
warranted for efficient multiuser and multisubject TCB system operation.
For further explanation of these constructs and features, refer to Section
2.0.

3.2,3 _lwlit

An audit of accesses to and operation of TCB operation is maintained in a set of
records (i.e., an audit trail) that collectively provide documentary evidence of
processing used to aid in tracing from original transactions forward to related
records and reports, and/or backward from records and reports to their component

B-46

Mappinz of Ada Usaace tz- TZ Criteria

source transactions. The TCE must be able to create, maintain, and protect from
modification or unauthorized access or destruction an audit trail of accesses to
the objects it pzotects. Audit data must be protected by the TCB so that read
access to .it is limited to those who are authorized for audit data. A TCB must
be able to record use of identification and authentication mechanism,
introduction of objects into a user's address space, deletion of objects, actions
tuaken by computer operators and system administrators and/or system security
officers, and other security relevant events. A TCB must be able to audit any
override of human-readable output markings. For each recorded event, the audit
record must identify the date and time of event, user, type of event, and success
or failure of the event. For identification and authentication events, the audit
record must include origin of request (terminal ID). For events that introduce
an object into a user's address space and for object deletion events, the audit
record must include the name of the object and the object's security level. The
ADP system administrator must be able to selectively audit the actions of any one
or more users based on individual identity and/or object security level. A TCB
must be able to audit the identified events that may be used in the exploitation
of covert storage channels. A TCB must contain a mechanism that is able to
monitor the ocurence or accumulation of security auditable events that may
indicate an iinient violation of security policy; this mechanism must be able to
immediately notify the security administrator when thresholds are exceeded. If
the o=rnce or accumulation of these security relevant events continues, the
system must take the least disruptive action to terminate the event.

Application of Ada Constructs and Features:

Managing audit data requires maintaining an audit trail. An audit trail is
typically recorded on disk and/or tape, which requires secure input and
output communication paths within a TCB that includes a secure disk and/or
tape. The audit data and audit trail can be treated as objects, which can
be represented by abstract data types. These consist of Ada's strong data
typing encapsulated in packages. Also, the audit data may be (at least
partially) located in dynamic storage. Tasking and shared variables may be
required to manage the audit data and audit trail when concL..rent processes
are warranted for efficient multiuser and multisubject TCB system operation.
For further explanation of these constructs and features, refer to Section
2.0.

3.3 Asszrarc

Assurayrce of the correctness of a TCB system's security controls, as specified
by the security requirements, determines the extent that the security
architecture must dictate many details of the development process. The two types
of assurance that must be considered are operational and life-cycle.

B-47

APD'D: F
NMapnq of Ada Usage -z T O :.teria

3.3.1 Opeational As surance

operational assurance includes the following aspects: system architecture, system
integrity, covert channel analysis, tristed facility management, and trusted
recovery.

3.3.1.1 System Architecture

The TCB must maint-ain a domain for its own execution that protects it frcm,
external interference or taxrpering. It must maintain process isolation through
the provision of distinct address spaces under its control. The TIB must be
internally structured into well-defined largely independent modules. It must
make effective use of available hardware to separate those elements that are
protection-critical from those that are not. TCB modules must be designed such
that the principle of least privilege is enforced. Features in hardware, such as
segmentation, must be used to support logically distinct storage objects with
separate attributes (namely, readable and writable). The TCB user interface must
be completely defined and all elements of the TCB must be identified. The TCB
must be designed and structured to use a complete, conceptually simiple protection
mechanism with precisely defined semantics; this mechanism must play a central
role in enforcing the internal structuring of the TCB and the system. The TCB
must incorporate significant use of layering, abstraction, and data hiding.
Significant system engineering must be directed -t-oard minimizing the complexity
of the TCB and excluding from the TB nodules that are not protection-critical.

Application of Ada Cantructs and Features:

The TCB's system architecture must be modular, and use data abstraction with
information hiding in its inplementation. Ada is well suited to incorporate
modularity with its packages and subprograms and to implement data
abstraction and information hiding with abstract data types. To ensure
system integrity and to prevent the creation of covert channels, the
creation of TCB system features (dynamic storage, input and output
communications within the TCB and between the user or subject and the TCB,
tasking and/or global and shared variables) must address the potential
security problems associated with their implementation and use. For further
explanation of these constructs and features, refer to Section 2.0.

3.3.1.2 System Interity

Hardware and/or software features must be provided that can be used to
periodically validate the correct operation of the on-site hardware and firnmare
elements of the TCB.

B-48

kA ??"ND D:x E
MaDzmz of Adc Usaae tc P-E Crfteria

Application of Ada onstructs and Features:

Ada allows for the crt" :ion of more readable code which helps the validation
process.

3.3.1.3 (Cert CianmJ jAlysis

The search for covert channels required in this analysis is facilitated by having
the TCB's software and docunentation .be readable and understandable.

Application of Ada CUstructs ari Features:

Ada allows for the creation of more readable code, which helps the
identification of covert channels.

3.3.1.4 Trusted Facility Managnt

The majority of issues related to trusted facility management are not software
issues. Rather, they are concerned with the responsibilities of the security
administrator and the ADP system administrative personnel.

Application of Ada Constructs and Features:

Ada allows for the creation of more readable code, which helps the
management of a trusted facility.

3.3.1.5 Trusted Recovery

Procedures anl/or mechanisms must be provided to assure that, after a. ADP system
failure or other discontinuity, recovery without a protection compromise is
obtained.

Application of Ada Contnicts and Features:

When implemented with proper security considerations, Ada's exception
handling mechanism can be used to help implement trusted recovery. For
further explanation of these constructs, refer to Section 2.0.

3.3.2 Life-Cycle Assuranc

Life-Cycle assurance includes the following aspects: security testing, design
specification and verification, and configuration management.

B-49

APPENDIX B
Mapping of Ada Usage tc TM Cr. tBia

3.3.2.1 Security Testing

Security mechanisms of the ADP system must be tested and found to work as claimed
in the system documentation. A team of individuals who thoroughly understand the
specific implementation of the TCB must subject its design documentation, source
code, and object code to thorxgh analysis and testing. The team's objective
should be to -uncover all design and implementation flaws that would permit a
subject external to the TCB to read, change, or delete data normally denied under
the mandatory or discretionary security policy. This will assure that no subject
is able to cause the TCB to enter a state such that it is unable to respond to
c uTInications initiated by other users. The TCB must be found resistant to
penetration. All discovered flaws must be corrected, and the TCB must be
retested to demonstrate that the flaws have been eliminated and that new flaws
have not been introduced. Testing must demonstrate that the TCB iaplementation
is consistent with the descriptive top-level specification. No design flaws and
no more than a few correctable implementation flaws may be found during testing
and there must be reasonable confidence that few remain.

Application of Ada C -tructs and Features:

Security testing of the TCB system is promoted by having the system
architecture exhibit modularity and using data abstraction with information
hiding in its irplementation. Ada is well suited to inco rate modularity
with its packages and subprograms and to inplement data abstraction and
information hiding with abstract data types. Security testing of the ICB
system must include the testing of all implementations of the following
system features: dynamic storage management, input and output commTunications
within the TCB and between the user or subject and the TCB, tasking and/or
global and shared variables. For further explanation of these constructs
and features, refer to Section 2.0.

3.3.2.2 Design Specification and Verification

A formal model of the security policy supported by the MC must be maintained and
be proven to be consistent with its axicms. A descriptive top-level specifica-
tion (DIIS) of the TCB must be maintained that coupletely and accurately
describes the TCB in terms of exceptions, error messages, and effects. It must
be shown to be an accurate description of the TCB interface. A convincing
c!rgument must be given that the DILS is consistent with the model.

B-50

APPD'DIX R
Mapping of Ada Usage to TCR Criteria

3.3.2.3 Configuration Managnt

A configuration management system must be in place that maintains control of
chianges to the descriptive top-level specification, other design data,
implemiritation documentation, source code, the running version of the object
code, and test fixtures and documentation. The configuration managenent system
must assure a consistent mapping among all documentation and code associated with
the current version of the TCB. Tcols must be provided for generation of a new
version of the TCB frcxn source code and for comparing a newly generated version
with the previous.. TCB version in. order to ascertain that only the intended
changes have been made in the code that will actually be used as the new version
of the TCB.

3.4 Eocuentation

Documentation is an important part of the software development process. It aids
users who are not familiar with the system in learning how to use the system
correctly. It aids support programmers in testing the system to ensure that a
modification has not had a negative impact on the system. This is especially
important when developing a TCB, because the security of the system is of the
utmost importance. While this is true, no special consideration needs to be
given to the development of the documentation for a TCB. The documentation must
be developed to meet all requirements set forth in the TCSEC and must be conplete
and up to date.

Application of Ada Contruts and Features:

The documentation, particularly the design documentation, must clearly
convey the implementation of the TCB system architecture, which must exhibit
modularity, and use data abstraction with information hiding in its
implementation. Ada is well suited to incorporate modularity with its
packages and subprograms and to implemnent data abstraction and information
hiding with abstract data types. These features not only aid the
understandability of the code, but also of the design documentation. The
documentation must clearly show how the security risks are handled,
including those posed by the following TCB system features: dynamic storage
management, input and output cammnications within the TCB and between the
user or subject and the TCB, tasking and/or global and shared variables, and
any tailoring or configuring of the Ada ocepiler or runtime system. This
discussion of the application of Ada constructs to documentation z plies to
the following four subsections: Security Features User's Guide, Trusted
Facility Manual, Test Documentation, and Design Documentation. For further
explanation of these constructs and features, refer to Section 2.0.

B-51

APD'D-_x E
Mappin of Ada Usaae " TCB Criteria

Ada's self-documenting capabilities can contribute to the design and testing
documentation. The self-documenting capabilities can be realized better
with the use of readable and understandable mnemionics. The code should
exhibit consistent indentation. Blank lines should be used to logically
partition the code. OCmments should be inserted into the code to provide
information that is not conveyed by the code. Each package and subprogram
should have a header that states its purpose, its authors, and the history
(dates) of its creation and revision(s).

3.4.1 Security Features User's Guide

A single summary, chapter, or manual in user documentation mist describe the
protection mechanisms provided by the TCB, guidelines on their use, and how they
interact with one another.

Application of Ada Constructs and Features:

Ada will have no impact on the development of the Security Features User's
Guide.

3.4.2 Trusted Facility Manual

A manual addressed to the ADP system administrator must present cautions about
functions and privileges that should be controlled when running a secure
facility. It must describe the q.rator and adristrator functions related to
security, to include changing the 9"-curity characteristics of a user. The manual
must provide guidelines on the consistent and effective use of the protection
features of the system, how they interact, how to securely generate a new TCB,
and facility procedures, warnings, and privileges that need to be controlled in
order to operate the facility in a secaure manner. TCB modules that contain the
reference validation mechanism must be identified. Procedures for secure
generation of a new TCB from source after modification of any modules in the TCB
mast be described. The manual must include the procedures to ensure that the
system is initially started in a secure manner. Procedures must also be included
to resume secure system operation after any lapse in system operation.

Application of Ada onstructs and Features:

Ada will have no impact on the development of the Trusted Facility Manual.

B-52

APMPDI)x B
Mapping of Ada Usaae to =,: Criteria

3.4.3 Test escmentation

The system developer must provide to the evaluators a document that describes the
test plan, test procedures that show hav the security mechanisms were tested, and
results of the security mechanisms' functional testing. Documentation =ust
include results of testing the effectiveness of the methods used to reduce covert
channel bandwidths.

AppIication of Ada Constructs and Features:

Ada coding should be self-Jocumenting, as discussed in Section 3.4, so that
it can contribute to the testing documentation.

3.4.4 Design Doonntation

Documentation must be available that provides a description of the manufacturer's
philosophy of protection and an explanation of how this philosophy is translated
into the TCB. The interfaces between the TCB modules must be described. A
formal description of the security policy model enforced by ths TCB must be
available and proven that is sufficient to enforce the security policy. Specific
TCB protection mechanisms must be identified, and an explanation must be given to
show that they satisfy the model. The TCB inplementation (i.e., in hardware,
firmware, and software) must be shown, using informal techniques, to be
consistent with the UTLS. The elements of the DTIS must be shown, using informal
techniques, to correspond to the elements of the TCB. Documentation must
describe how the TCB implements the reference monitor concept and give an
explanation why it is tamper resistant, cannot be bypassed, and is correctly
irplemented. Documentation must describe how the TCB is structured to facilitate
testing and to enforce least privilege. Documentation must also present the
results of covert channel analysis and the tradeoffs involved in restricting the
channels. All auditable events that may be used in the exploitation of known
covert storage channels must be identified. The bandwidths of }mown covert
storage channels, the use of which is not detectable by the auditing mechanisms,
must be provided.

Aplication of Ada Constructs and Features:

Ada coding should be self-do-cmenting, as discussed in Section 3.4, so that
it can contribute to the design documentation. The use of Ada PDL will
assist in generating readable and understandable design documentation.

B-53

APPLNTDXE

Stunnar\' arr Conclusions

4. 0' SUMMARY AND CQY-US] WS

4.1

This appendix identified benefits and potential deterrents of using Ada in the
software development of TCBs. These benefits included Ada's assets in the
application of sound software engineering principles, such as data abstraction,
information hiding, =Idularity, and localization. Also included among the
benefits were such Ada constructs as strong data typing, packages, subprograms,
and tasks. This appendix also identified and categorized potential deterrents of
using Ada in the software development of TCBs. These included shortcomings
inherent to progranning languages in general, shortcomings unique to the Ada
language, and benefits of using tools to develop Ada software.

Sections 2.0 Mid 3.0 addressed the issues in two ways. First, Section 2.0
focused on the following issues: (1) Benefits of Using Ada in Developing TCB
Systems, (2) Potential Deterrents to Using Ada in Developing TCB systems, (3)
Shortcomings inherent to programming languages in general in developing TCB
systems, (4) Shortcomings unique to the Ada language in developing TCB systems,
(5) Benefits of using tools for developing Ada software for TCB systems. Section
3.0 presented these issues in the context of a mapping of Ada usage to
generalized TCB criteria. Ada constructs were identified that may be used to
implement TCB features and functions.

4.2 Conclusions

Because Ada was designed with features and constructs that promote recognized
sound software engineering principles, more so than other current HOLs, it is
well suited as the implementation language of TCBs. Although Ada offers various
specific benefits, the potential deterrents of using Ada must be recognized and
addressed. Though these potential problems were identified with using various
Ada features, this is not meant to imply that any of the features should not be
used. Rather, the security of the TCB must not be copromrised, as discussed in
Section 2.0, when any of the constructs and features are used in the
izplementation of the TCB.

B-54

APPIEDIX B
Bibliography

5.0 BI=OGRAPHY

Abrams, Marshall D., Podell, Harold J., 1987. Tutorial Cmuuter and Network
Securiy. Washington, D. C.: IE Cciter Science Press.

Abrams, Marshall D., Podell, Harold J., 1988. Rep t DevelgUment in Network
scry. 2906 Covirgton Road, Silver Spring, MD, 20910.: Caumter Educators Inc.

.Anderson, Eric R., Adals Suitability for Trusted -Qm2,ter Systems from
Proceedings of the S)Mosiur on Security and Priv, Oakland, California, 22-24
April,

1985.

Baker, T. P., 13 July 1988. Issues Involved in Develxinq Real-Tim Ada Systems.
Department of Ccmpiter Science, Florida State University, Tallahasse, FL: for U.
S. Army HQ, (OX/ADP.

Boebert, W. E., Kain, R. Y., and Young, W. D., July 1985. "Secure Camputijng: The
Secure Ada Tar-get Approach." Scientific Honeyweller, Vol. 6, No. 2.

Boehm, Barry. 1988. A Sjpal Model of Software Development and Enhancement.
Washington, DC: Cmputer Science Press.

Booch, Grady. 1987A. Software Components with Ada. Menlo Park, CA: The
Benjamin/Cun ings Publishing Campany, Inc.

Booch, Grady. 1987B. Software Enineerina with Ada. 2nd ed. Menlo Park, CA: The
Benjami/Cummings Publishing Campany, Inc.

Brill, Alan E., 1983. Building Controls Into Structured Systems. New York, N.
Y.: YOURDON Press Inc.

Buhr, R. J. A., 1984. System Design with Ada. Englewood Cliffs, N. J.: Prentice-
Hall.

a-ierry, George W., 1984. Parallel Pr--r-n-mir in ANSI Standard Ada. Reston,
Virginia: Reston Publishing Campany, Inc.

Defense System Software Development. 1988. DoD-STD-2167A, 29 February 1988.

Feidman, Michael B., 1985. Data Structures with Ada. Reston, Virginia: Reston
Publishing CCaIany, Inc.

Freeman, Peter. 1987. Tutorial: Software Reusability. Washington, 1). C.: IEEE
Coputer Science Press.

B-55

3PEN11 MD E
Biblioarapny

F2-na2 -auatazo Reprt cf SX_ ' 2? Senzpmber 29)P.. Sezrxe C-m~m=-.-tjoIAS
Processor STOP Release 2.2.

Gasser, Morrie. 1988. Buildin* a Secure Ccmputer Syst . New York, N. Y.: Van
Nostrand Reinhold Caqrany, Inc.

Gehani, Narain. 1984. Ada Oonc et Pr. Englewood Cliffs, N. J.:
Prentice-Hall Inc.

Gilpin, Geoff. 1986. Ada: A Guided Tour and Tutorial. New York, N. Y.: Prentice
~a.1aPress.

IEEE Standard Glossary of Software Encineering Terminoloqy. 18 February 1983.
(IRK Std 729-1983).

Murgle, Jerry. 1988. Developing Ada Systems. Technology Training Corporation's
seminar.

National Ccmqmter Security Center. 1985. Department of Defense Trusted Computer
System Evaluation Criteria. (DOD 5200.28-STD)

National Ccputer Security Center. 1987. Trusted Network Interpretation of the
Trusted Ccumuter System Evaluation Criteria.

Nissen, John and Wallis, Peter. 1984. Portability and Style in Ada. Cambridge,
Great Britain: Cambridge University Press.

Reference Manual for the Ada Proranmdi Lanquacfe. 1983. ANSI/MIL-STD-1815A-1983,
17 February 1983.

Ross, D. T., Goodenough, J. B., and Irvine, C. A., 1975. "Software Engineering:
Process, Principles, and Goals," C

Saydjari, 0. S., Beckman, J. M., and Leaman, J. R., 1987. "IC ing Computers
Secmrely," Proceedings, 10th National Computer Security Conference, Baltimore,
MD: September 21-24, 1987, National Bureau of Standards/National Ccx-uter
Security Center.

Shaffer, Mark of Honeywell, Canpiting Technology Center, and Walsh, Geoff of R &
D Associates Secure. 1988. "t1DCK/i c: On Implementing Unix on the 1C TcB,"
Proceedings, 11th National Camputer Security Conference, Baltimore, MD: October
17-20, 1987, National Institute of Standards and Technology/National Ctqputer
Security Center.

Tracz, Will. 1988. Tutorial: Softmare Reuse: EerqinM Technology. Washington, D.
C.: IEEE Cquter Science Press.

B-56

APPENDD. B
Bibliography

Trus C Corruter 3vt.-S "Reguirents Quide for Don krl2igations,
Seiptezber 1987.

B-57

APPENDIX C

Progrimnv Guidelines
for Using Ada in the
Software Develcent

of Trusted Computing Bases

Prepared for:

National Capiter Security Center
9800 Savage Road

Fort Meade, MD 20755

Prepared by:

Ada Applications Ard
Software Technology Group

IIT Research Zrstitute
4600 Forbes Boulevard

Lanflam, MD 20"706

April 1989

C-I

C-2

APPENDIX C
TABLE OF CONTI=

B qe

1.0 INIRODUCTION.... C-5

1.1 Bacibrm2rK1..0C-5
1.2 Format .. C-6

1.3 Key te rm C-6

2.0 MAPPING OF TCB RELEVANT ADA CONSTIUC AND FEATURES TO
THE REFERENCE MANUAL FOR THE ADA PROGRAMMI. IANGUAGE C-8

2.1 Tailoring and Configuring Ada Compilation and Runtime

3 .0 MAPPING OF ADA USAGE TO TCB CRITERIA C-96

3.1 Security Policy ... C-98
3.2 Accountability .. C-101
3.3 Assuran .. C-108
3.4 Documentation ... C-112

4.0 SULMMAR AND CONCLUSICNS C-115

4.1 S[WR #a........*................ C-115

4.2 CONCLUSIONS C-115

5.0 aOLT19r.TION OF EXAMPLES C-116

6.0 BITJOGRAPHY .. C-161

C-3

C-4

APPENDIX C
Introduction

1.0 INTRODUCION

This appendix presents guidelines for developing trusted computing bases (TCBs)
in Ada. It is meant to complement existing standards. The user of this appendix
should also use standards or guidelines for the development of TCBs. General TCB
development issues are discussed in this docment only to the extent that they
are affected by Ada. Also the developer of a TCB in Ada should use general
purpose Ada guidelines for direction on the general use of Ada features. These
guidelines detail the use of Ada features only as they would be used for specific
aspects of TCB development. This document, therefore, is to complement existing
TCB development guidelines and general-purpose Ada coding guidelines.

1.1 B

This appendix provides guidelines on how to use Ada in the development of TCB
systems. This guidance focuses on how to exploit the advantages of using Ada,
such as data abstraction, information hiding, modularity, localization, strong
data typing, packages, subprograms, and tasks.

This appendix does not imply that software alone is sufficient for ensuring
security in a TCB. As discussed in the papers "Secure Coaputing: The Secure Ada
Target Approach," "OCKing Ccuputers Securely," and "LCK/ix: On Imlenting
Unix on the LOCK TCB," the security of a system cannot be insured with software
alone. Hardware is fundamentally important to TCB system security. This
appendix does not discuss hardware aspects of TCB systems. If the reader wishes
to investigate the hardware issues, he should consult the references cited above.

1.2 Format

This appendix consists of four sections. Mhe first section is an introduction
which consists of background information and definitions of key terms that appear
in this document. The key terms section includes terms found in the glossary of
the TCSEC, the Reference Manual for the Ada Procrarinc language (IPM) [ANSI/MIL-
STD-1815A-1983], and the IEEE Standard Glossary of Software Engineering
Terminolo [IEE 1983]. Sections 2.0 and 3.0 address the guidelines in two
ways. First, Section 2.0 provides definitions of and general programmang
guidelines on the use of Ada constructs and features that have significant
bearing on the development of TCB Systems. These guidelines are mapped to the
IM4. Several Ada constructs are virtually or literally identical to those of
other high order languages such as FORRAN and C. In these instances, the phrase
"No Ada-specific impact on TCBs" appears in the text. Also, some subsection
topics are aMdcressed by the main section under which they fall. When the
subsection adds no additional effect beyond what is discussed in the main section
the phrase "No additional Ada-specific impact on TCBs" appears. Section 3.0
provides guidelines on the application of Ada constructs and features in the
context of a mapping of Ada usage to generalized TCB criteria. In particular,
class B3 as defined in the TCSEC is used as a template for the generalized TCB

C-5

APPENDIX C
Introduction

criteria. Though potential problems exist when using various Ada constructs and
features, this does not mean that any of the constructs and features should not
be used. Rather, certain sets of features when used together 1,-ist be used in
accordance with the established guidelines to ensure the security of the TCB.
Section 4.0 consists of a summary of this appendix ard its conclusions.

1.3 Key

Several key words appear throughout the text of this document. These words have
specific meanings within the context of certified systems and their definitions
are presented here.

The following definitions are taken directly from the TCSEC:

Access - A specific type of interaction between a subject and an object that
results in the flow of information from one to the other.

Audit Trail - A set of records that collectively provide documentary evidence of
processing used to aid in tracing fran original transactions forward to
related records and reports, and/or backwrds from records and reports to
their component source transactions.

Covert wrKil - A communication channel that allows a process to transfer

information in a manner that violates the system's security policy.

Data - Information with a specific physical representation.

Discretionary Access Control - A means of restricting access to objects based on
the identity of subjects and/or groups to which they belong. The controls
are discretionary in the sense that a subject with a certain access
permission is capable of passing that permission (perhaps indirectly) on to
any other subject (unless restrained by mandatory access control).

Mandatory Ae Control - A means of restricting access to objects based on the
sensitivity (as represented by a label) of the information contained in the
objects and the formal authorization (i.e., clearance) of subjects to access
information of such sensitivity.

Ctject - A passive entity that contains or receives information. Access to an
object potentially implies aocess to the information it contains. Examples
of objects are: records, blocks, pages, segments, files, directories,
rhf% -?- ,Z Aw, As -" w e1 1 bi, bytes. words, fields,
processors, video displays, keyboards, clocks, printers, n.twork nodes, etc.

Sensitivity label - A piece of information that represents the security level of
an object and that describes the sensitivity (e.g., classification) of the

C-6

APPENDIX C
Introduction

data in the object. Sensitivity labels are used by the TCB as the basis for
mandatory access control decisions.

Subject - An active entity, generally in the form of a person, process, or device
that causes information to flow among objects or changes the system state.
Technically, a process/dcmain pair.

Trusted Cumpzting Base (TC) - The totality of protection mechanisms within a
camputer system - including hardware firmware, and software - the
cambination of which is responsible for enforcing a security policy. A TCB
consists of one or more conponents that together enforce a unified security
policy over a product or system. The ability of a TCB to correctly enforce
a security policy depends solely on the mechanisms within the TCB and on the
correct input by system administrative personnel of parameters (e.g., a
user's clearance) related to the security policy.

Additional Terms

These terms are included because they appear frequently in the following text.

Pragma - A capiler directive. That is, it "is used to convey information to
the cupiler." According to the Reference Manual for the Ada
ProramminQe (IRM) (ANSI/MIL-STD-1815A-1983], the predefined
pragmas (Refer to Annex B in this manual for descriptions) "must be
supported by every inplementation. In addition, an implementation may
provide implementation-defined pragmas, which must then be described in
Appendix F," i.e., the appendix on implementation-dependent
characteristics that the Ada oampiler vendor must provide in his Ada
language reference manual.

Security - The protection of computer hardware and software from accidental or
malicious access, use, modification, destruction, or disclosure. [IEEE
1983] Security also pertains to personnel, data, comnunications, and
the physical protection of computer installations. Specifically, for
the purposes of this report, security is defined by the criteria in
the TCSEC, i.e., a given security problem corresponds with a specific
TCSEC criteria.

C-7

A PENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Programnm= Lanquage

2.0 MAPPING OF TCB RELEVANT ADA CONSTRUCIS AND FEATURES To
TME REFERENCE MANUAL FOR THE ADA PROGAN0ING LANGUAGE

This section provides software engineering and programming guidelines for using
Ada constructs and features in develping TCB systes. These guidelines are
mapped to the LWA [ANSI/MIL-STD-1815A-1983) to provide a convenient means of
reference. These guidelines are for software engineering practices and
programming conventions for usirg the Ada language to develop TCB systems.

lthough these guidelines are recamendations, justification should be made for
any deviation from them. The development of any high quality system, and
especially that of a TCB system, requires strict adherence to sound software
engineering principles and practices, frum requiremnts analysis and design
through coding and maintenance.

Ada supports sound software engineering principles, including the following
(Discussions on them are located in the indicated sections.):

Strong Data Typing (3. Delarations and Types)
Data Abstraction (7. Pacce)
Infonation Hiding (7. Packwges)
Modularity and localization (7. Packages)
Reusable Code (10.4 The Program Library)

Note, a discussion on tailoring and configuring Ada copiler and runtime systems
is located in Section 2.1.

Although this appendix does not advocate abstaining fran using any Ada
constructs, it should be noted that each of them, to varying degrees, contributes
to a large Ada runtime library. Eric Anderson, in his paper "Ada's Suitability
for Trusted Conpter System," proposes the extreme view of minimizing the Ada
runtime library for the security kernel as a primary goal because its size may
lend itself to hiding covert channels and Trojan horses. To minimize the size cf
the Ada runtine library, he proposes the following severe restrictions in
creating the security kernel: not allowing use of any dynamic storage, tasking,
exception handling, any Ada standard packages other than STANDARD and SYSEM;
limiting the use of runtime constraint checking, math and conversion routines,
and representation clauses. Addressing security issues associated with the Ada
rxntime library are beyond the scope of this document. Clearly, though, Ada
runtine library security issues need to be addressed by further research.

Guideline:
1. Coding guidelines identified in the remainder of Section 2.0 should be used

in conjunction with general software engineering standards and with Ada
coding standards. The guidelines presented here address only the use of Ada
for specific TCB criteria.

C-8

APPENDIX C
Mapping Of TICB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Proraming Lancruage

All but one of the remaining subsections of this appendix are structured in
accordance with the chapters of the UR4. The remaining subsection covers
tailoring and configuring Ada compilers and runtime systems. Each subsection
includes descriptions of an Ada construct or feature, programming guidelines for
using it in developing TCB system, and examples as needed.

More general coding standard issues, such as limiting the amount of nesting of
loop and if blocks and always providng an others clause in case statements, are
not addressed by the guidelines presented here.

C-9

APPUEDI: C

Mapping Of TCB Relevant Ada Constructs and Features k
The Reference Manual For The Ada Proqzram.dim Lamquaae

2 - 1. Introduction

This chapter of the IM introduces the Ada language standard. The two
sections of primary interest to developing TCBs are Scope of the Standard
(Section 2 - 1.1), which discusses Ada standardization and portability, and
Classification of Errors (Section 2 - 1.6).

2 - 1.1 Scope of the Standard

This definition of the Ada programming language was developed to promote
Ada's standardization and portability. Because Ada, more so than other
languages, is very standardized (in particular by the Department of Defense
(DoD)) no subsets or supersets of Ada are allowed. This standardization is
assured by the DoD's process of validation of Ada cumpilers. This aids the
portability of Ada software among different types of ccmputers. In
particular, an Ada TCB system is likely to be easier to port between
different types of computers than if the TCB were developed in another
language.

1. To take advantage of Ada's standardization and portability the use of
the following items should be avoided: representation clauses,
implementation-dependent features, and interfacing with other
languages.

2. Issues involving such features, which may conpromise standardized code
and/or code portability, should be addressed as early as possible in
the development of a TCB system, preferably in the TCB's requirements
specification.

3. The implementation of these features should be monitored during
preliminary and detailed design reviews and code walkthroughs.

2 - 1.1.1 Extent of the Standard

No additional Ada-specific impact on TCBs

2 - 1.1.2 Conformity of an Iplementation with the Standard

No additional Ada-specific impact on TCBs

C-10

APPEND:). C
M1ppinc Of WE Relevant Ada Construct-s and Features To
The Reference Manual 'or The Ada Pro=a.ninq ancuaoe

2 - 1.2 Struture of the Standard

No Ada-specific impact on TCBs

2 - 1.3 Dsign Goals and Sourcs

No Ada-specific impact on TCBs

2 - 1.4 language Sumaxy

No Ada-specific iapact on TCBs

2 - 1.5 M1t/lod of Description and Syntax Notion

No Ada-specific impact on TCBs

2 - 1.6 Classification of Errors

The IR4 defines four types of errors: corpilation time errors, runtine
errors, erroneous execution, and incorrect order dependencies. The first of
these four types of errors, conpilation time errors, are cTmmnly referred
to as syntax errors, and will not allow for compilation of the program. The
second type of error, the runtime error, occurs during the attempted
execution of the program, and is connonly referred to as an "exception."
Runtime errors in general have been widely discussed in the literature
[Goodenough and Liskov 1985], and have even been discussed with respect to
Ada [tnckham 1980). In addition to this, because Chapter 7, "Exceptions,"
is devoted entirely to this topic, its discussion will be deferred to that
chapter. The remaining error types, erroneous execution and incorrect order
dependencies, are not required to be detectted at conpilation or execution,
but do result in violations of certain rules of the Ada language.

Guidelines:
I. The software developer, rather than the Ada language, is responsible

for the detection of the four types of errors: compilation time
errors, runtime errors, erroneous execution, and incorrect order
dependencies.

2. The detection of these four types of errors should be monitored during
preliminary and detailed design reviews and code walkthroughs,

C-1

APPID":x C
Mapping Of TCB Relevant Ada Construc-s and Features Tc
The Reference Manual For The Ada P qramtLnz Lancuage

2 - 2. Lexical Elements

This chapter of the IM defines the lexical elements allowed in the text of
an Ada compilation unit. It also describes pragmas, which provide certain
information for the coupiler. The majority of these item have little
relevance to the software developnt of TCBs.

2 - 2.1 Character Set

No Ada-specific impact on TCBs

2 - 2.2 Iexical Elements, Separators, and Deliiters

No Ada-specific impact on TCBs

2 - 2.3 Identifiers

An important key to the readability of software is the use of mnemonic
identifiers. Readability of software is a key ccuponent of software
understandability.

Guidelines:
1. Name identifiers with clearly readable and understandable mnemonics.

2. Tailor the naming of identifiers to the application to improve the
readability of programs and reduce the chance for errors [ASOS 1987).

Examples: The following examples illustrate clearly readable and
understandable mnemonic identifier names. They are identifiers
that are used in later exn~mles in this appendix. The use of each
identifier should be clear based on its rame. This set of
identifiers is taken oat of context; therefore, it does not
constitute copilable code.

NameObj ectb '7 Record - see 2 - 3.2.1
Max NamedString-Length - see 2 - 3.2.2
Named IndividualsListType - see 2 - 3.2.1
S N Lred 0bj;'ctsList - see 2 - 3.2.1

C-12

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Rm nr ra n anuage

2- 2.4 Numeric Literals

Guideline:
1. Use underscore in numeric literals to add clarity and thus reduce the

number of aocidental errors [ASOS 1987).

Exoples: his exale illustrates underscoring in numeric literals which
improve the readability of literals that have many digits.
Underscores are used in place of camias in large numbers. In
strings of digits to the right of the decimal, an underscore is
used, for example, after every fifth digit.

123 456 rather than 123456 - integer literal
3.14159_26 rather than 3.1415926 - real literal

2 - 2.4.1 Decimal Literals

No Ada-specific impact on TCBs

2 - 2.4.2 Based Literals

Guideline:
1. Use base literals to allow clear expression of bit masks and other

items not easily expressed in decimal notation [ASOS 1987).

Examples: This example illustrates base literals.

- integer literals of value 255
2#1111_1111# 16#FF# 016#OFFW

2 - 2.5 Character Literals

No Ada-specific imact on TCBs

2 -2.6 String Literals

No Ada.-specific impact on TCBs

C-13

APPD-D. C

Mappun. Of WCB Relevant Ada Constructs and Features T
The Reference Manual For The Ara Pr o mxn Laniuaae

.7 Comments

Cacents should provide additional instructive information about mxodules and
their underlying algorithms that is not conveyed by their code.

GQli ie:
1. The information provided in comments should reflect the TCB's design,

and promote the TCB's coding aid maintenance.

2 - 2.8 Pragmas

The FPR M construct is relevant, although this chapter of the I/M does not
discuss its use and application, but only rules for its placement within the
program text. For the discussion of its use and application see Section 2-

11.7.

2 - 2.9 Reserved Words

No Ada-specific impact on TCBs

2 - 2.10 Allowable Replacement of Characters

No Ada-specific impact on TCBs

C-14

;=PP cD x C

Mapprna Of TCB Relevant kla Consrcs--T and Features Tc
The Reference Manua. For The Ada Proam A Lanquaae

2 - 3. Declarations and Types

This chapter of the IBM defines the type mechanism, the means for declaring
objects of the types, and the set of operations on the types. The major
areas that are of concern to the developent of TCBs are object and type
declarations, array types, and access types. Static storage is discussed in
Array Types (Section 2 - 3.6). Dynamic storage is discussed in Access Types
(Section 2 - 3.8).

Ada's strong data typing facilities provide a means of associating related
data objects with data types, which is a fundamental aspect of data
abstraction. Strong data typing serves to isolate data types. For a
further discussion of data abstraction refer to Section 2 - 7, Packages.

Guidelines:
1. Use Ada's strong data typing to create user-defined types, namely,

subtypes and derived types.

2. Name data types and objects with clearly readable and understandable
mnemonics that prcmote the maintenance of the code.

2 - 3.1 Declarations

No Ada-specific impact on TCBs

2 - 3.2 Objects and Named Numbers

2 - 3.2.1 Object Declarations

An erroneous program may ocur If it includes the use of an object prior to
assigning a value to the object. The formal definition of the language
requires that the default value for objects be specified when declared.

Guideline:
1. Initialize data items in their declarations [ASOS 1987].

2. Disallow references to objects before their initialization. This
should be addressed with explicit initialization and monitored during
code walkthroughs. That is, ensure that no undefined variable will be
referenced by assianing a default value in each oblect declaration.

3. Name all constants and literals [ASOS 1987].

C-15

Ap-PEiDIY C
Mapping Of TB Relevant Ada Constructs and Features t
The Reference Manua. For The Aa Prcra mun, Lancniaae

Examples: The foilowing examples illustrate clearly readable and
understandable mnemonic object declarations. This set of object
declarations includes the initialization of the objects.

- MaxNamedString_ I.x , NameStringType, and Blank Name_String
- are declared in paclage BasicTCB_TypesPackage. Because only essential
- features of this package need to be shown, it is not included formally in

this appendix.

BlankName String : NameString Type - see 2 - 3.6.3
(1 .. MaxNamedString Length => ' -- see 2 - 3.2.2

-- The next three declarations in this section are located in the array
types version of package AccessControlList Types Package. Because only

-- essential features of this package need to be shown, it is not included
-- formally in this appendix.

ScrubbedNamedObjectsList
NamedObjects List Type see 2 - 3.6

= Named ObjectsList Type'
otbers => Basic_TCB_TypesPackage.

Blank_NameString);

Scrubbed Named Individuals List :
NaedIndividuals ist Type see 2 - 3.6

= NamedIndividuals ListType'
oters => BasicTCBTypes Package.

BlankName String);

ScrubbedGroups ofNamedIndividuals List
Groups of_Named_Individuals-List Type see 2 - 3.6

= Groups ofNamedIndividuals_List_Type'
oters => Basic_TCB_Types Package.

Blank Name String);

-- The next three declarations in this section are located in the access
types version of package AccessControl ListTypes Package. Because only
essential features of rhis package need to be shown, it is not included

-- formally in this appendix.

C-16

Mappin. Of TP-? Relevant Ada Constructs an Features _T
The Reference Manu- For The Ada Pro rrn la ace

ScrubbedNamed Objects List
NamedObjectsListType -- see 2 - 3.8

= Named Objects List Type'
(Name => Basic TCB Types Package.

Blank_Name String,
Next => ull);

Scrubbed Named Individuals List
Na- iIndividualsListType see 2 - 3.8

SNamed Ind.ividuals-Lis Type'
(Name => BasicTCB Types Package.

BlankNameString,
Next => nll) ;

ScrubbedGroups of Named Individuals List
GroipsofNamedIndividuals_List Type - see 2 - 3.8

= Groups of NamedIndividuals_List Type'
(Name => Basic TCB Types Package.

Blank_Name_String,
Next => nu1);

-- The remaining declarations in this section are located
-- in both the access and array types versions of
-- package AccessControl List Types Package. Because only essential

-- features of this package need to be shown, it is not included formally in
-- this appendix.

Scrubbed Named ObjectACLRecord
Named Object_Record Type -- see 2 - 3.7

. NamedObject RecordType'
Name => Basic_rB_Types-Package.

BlankNameStrin,

Sensitivitylabel =>
Mandatory_AccessControlTypes Package.

ScrubbedSensitivity Label, - see 3 - 3.1.3

Authorized Named Individuals List =>
Scrubbed_-NaniIndividualsList,I

Authorized Groups of Named Individuals List =>
Scrbbed Groups of NamedIndividuals_-List,

UnauthorizedNamedIndividuals List =>

ScrubbedNamedIndividualsList

C-17

APDI DD C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Proqr.-aranq Lwaae

Nameq_ObjectA(L Record : NamedkObjectRecordType - see 2 - 3.7
:= ScrubbedNamed Object ACLRecord;

Scrubbed Named Individual ACL Record
Named Indvi ualRecordType - see 2 - 3.7

= NamedIndividual_Record Type'
(Name => Basic TCB TypesPackage.

Blank NameString,
- see 2 - 3.6.3

SensitivityLabel =>
Mandatory AccessControl_TypesPackage.

Scrubbed Sensitivity _abel, - see 3 -- 3.1.3

Named ObjectsList => ScrubbedNamedbjectsList);

Named Individual ACL Record :
Named ldividtalRcord Type - see 2 - 3.7

:= Scrubbed Named Individual_ALRecord;

ScrubbedGroupofNamed_Individuals ACL Record
Group of NamedIndividualsRecord_ Type - see 2 - 3.7

= Group of NamedIndividualsRecord Type'
Name => Basic TCB TypesPackage.

BlankName_String,
- see 2 - 3.6.3

SensitivityLabel =>
MandatoryAccessControl_TypesPackage.

ScrubbedSensitivityLabel, - see 3 - 3.1.3

NamedObjectsList => ScrubbedNamedObjectsList);

Group of Named Individuals_ACL_Record :
Group of Named _]ndividualsRecord_Type -- see 2 - 3.7

:= ScrubbedGroup_o f_NamedIndividuals_AL_Record;

2 - 3.2.2 Number Declaraticrs

The use of number declarations improve the readability, understandability,
and maintenance of code.

C-18

PPEND-IX C
Mapping O . B Relevant Ada Constructs and Features Tc.
The Reference Manua2 For The Ada Prograimiani Lncrraqe

Guideline:
1. Use mnemonic number declarations to make code more readable and

understandable.

Example: The following exaple illustrates a clearly readable and
understandable imenonic number declaration

- MaxNamedStringLength is declared in package BasicTO3 Types-Package.
-- Because only essential features of this package need to be shorn, it is
- not included formally in this appendix.

MaxNamed_String_ : constant := 80;

2 - 3.3 Types and Subtypes

A-though types and subtypes within Ada are well behaved with respect to
developing TCBs. Memory management of objects of array types and access
types warrants special consideration.

2 - 3.3.1 Type Declaraticns

Example: The following example illustrates a clearly readable and
understandable mnemonic type declaration.

-- DayType is declared in package Basic TypesPackage. Because only
-- essential features of this package need to be shown, it is not included
-- formally in this appendix.

type Day_Type is (Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday);

For additional discussion refer to Section 2 - 3. and 2 - 3.3.

2 - 3.3.2 Sttype Declarations

Example: The following example illustrates a clearly readable and
understandable mnemonic subtype declaration.

-- Weekday Type is declared in package Basic'TypesPackage. Because only
-- essential features of this package need to be shown, it is not included
-- formally in this appendix.

C-19

APPENDIX C
Mappng Of TCB Relevant Ada Cos-_ucts and Features t,
T"he Reference Manua- For The A=- r _o--_nrn Lanoaci

sbtype WeekdaI__ ype is DyL''ype rarrje Monuay .. Friaay;

For additional discussion refer to Section 2 - 3. and 2 - 3.3.

2 - 3.3.3 Classification of Operations

No additional Ada-specific impact on TCBs

2 - 3. eived Types

Derived types are subject to the same restrictions as their parent types.

Example: The following example illustrates a clearly readable and
understandable mnemonic derived type declaration. The
package KeyManagerPackage is declared in Section 2 - 7.4.2.

type AccessKey Type is new Key Manager_Package. Key Type;

- the derived subprograms have the following specifications:

- proceure GetKey (K : out Access_Key Type);
- function "<" (X, Y : AccessKeyType) return BOOLEAN;
- function 1+" (X, Y : AccessKeyType) return Access Key Type;

2 - 3.5 Scalar Types

No additional Ada-specific impact on TCBs

2 - 3.5.1 Enumeraticn Types

The use of enumeration types can improve the readability, understandability,
and maintenance of code.

Guideline:
1. An enumeration type should be used to identify a set of discrete itemswith mnemonic names that promote their readability and

understandability.

Example: The following example illustrates a clearly readable and
understandable memonic enumeration type declaration.

C-20

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada PrcarIMi Mnuace

- SecurityClassificationlType is declared in
- package Basic TCB TypesPackage. Because only essential

-- features of this p e need to be shown, it is not included
-- formally in this appzedix.

type Security_Classification_Type is
(Unclassified, Confidential, Secret, Tp_Secret);

2 - 3.5.2 0mrarter Types

No additional Ada-specific impact on TCBs

2 - 3.5.3 Boolean Types

No additional Ada-specific impact on TCBs

2 - 3.5.4 Intr Types

No additional Ada-specific inpact on TCBs

2 - 3.5.5 Cperations of Discrete Types

No additional Ada-specific inpact on TtCs

2 - 3.5.6 Real Types

No additional Ada-specific impact on TCBs

2 - 3.5.7 Floatin Point Types

No additional Ada-specific impact on TCBs

2 - 3.5.8 peratimr of Floating Point Types

No additional Ada-specific inpact on TCBs

C-21

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada prgcMnM Language

2 - 3.5.9 Fixed Point Types

No additional Ada-specific impact on TCBs

2 - 3.5.10 Operations of Fixed Point Types

No additional Ada-specific inpact on TCBs

2 - 3.6 Array Types

Of all data types whose storage is static, array types and their memory
management are of primary concern to the software develoment of TCBs.
Static storage is a portion of memory that is set aside at ccipile tire and
whose size does not change during program execution. Objects of most Ada
data types use static storage. Statically stored data, like that in an
array, can generally be accessed more efficiently than data stored
dynamically in data structures consisting of access types. This is offset
by their potentially inefficient use of meotry; this is particularly true of
arrays. It wwuld be desirable to include in the next revision of Ada
(Ada9x) a predefined pragma that directs Ada conpilation to include code
that scrubs memory that is local to a subprogram or package just before the
scope of the subprogram or package is left during program execution, i.e.,
just before the visibility of the static (or dynamic) memory is lost. These
conflicting needs, efficient execution versus efficient use of memory, are
particularly imortant for large data structures.

Guidelines:
1. Determine whether each data structure should be implemented for

efficient execution (static), or for efficient memory usage (dynamic).
This determination should be done as early as possible in the
development of a TCB system, preferably in the TCB's requirements
specification.

2. Monitor the implementation of static storage during design reviews and
code walkthroubis. At tines the need for a new static data structure
will not be identified until design or coding. The need for and use of
these new static data structures also should be monitored during design
reviews and code walktbroughs.

3. Static storage should be initialized before use and be scrubbed when
the data it contains is no longer needed. That is, static storage
should contain sensitive data only when the corresponding static data
structure is visible during program execution. Thus, local static

C-22

APPENDIX C
Mappirg Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Procrammin Lanuace

storage should be initialized upon entering its scope, and snould be
scrubbed just before leaving its scope.

Examples: The following examples illustrate clearly readable and
understandable wmnonic array type declarations.

- The following declarations in this section are located in the array
- types version of package AccessControl List TypesPackage. Because only
- essential features of this package need to be shown, it is not included

-- formally in this appendix.

Max Number of Objects : constant NATURAL := 25;
Max Number of Individuals : cunstant NATJRAL := 25;
Max_NumberofGroups ofIndividuals : constant NM AL := 25;

type NamiedObjects List Type is array
POSITIVE range 1 .. Max Numberof-objects) of
BasicTCBTypesPackage. Nameof Object Type; - see 2 - 4.1

type Named_Objects ACL Type is array
(POSITIVE range 1 .. Max_Numberof Objects) of

Named_Object Record Type; - see 2 - 3.2.1

type Named_IndividualsListType is array
(POSITIVE rang 1 .. Max_Number_ ofIndividuals) of

BasicTCBTypesPackage.
Name of IndividualType; - see 2 - 4.1

type Named_Individuals ACLType is array
(POSITIVE range 1 .. Max Number ofIndividuals) of

NamedIndividual_Record Type; - see 2 - 3.2.1

type Groups ofNamedIndividualsListType is array
POSITIVE range 1 .. MaxNumber of Groups ofIndividuals) of
BasicLTCBTypesPackage.

Name of GroupofIndividuals_Type; - see 2 - 4.1

type Groups of_NamedIndividuals ACLType is array
POSITIVE rang 1 .. Max Number of GroupsofIndividuals) of
Group of_Named Individuals_Record Type; - see 2 - 3.2.1

2 -3.6.1 Index Contraints and Discrete Ranges

No additional Ada-specific impact on TCBs

C-23

A.pPENDIX C
Yapping Of TCB Relevant Ada Constructs and Features To
*. .e Reference Manual For The Ada P ragpdriq Lanuacie

2 - 3.6.2 Operations of Array Types

No additional Ada-specific impact on TCBs

2 - 3.6.3 The Type String

Emple: The following example illustrates a ciearly readable and
understandable mnmowic string type declaration.

- NameStringType is declared in package EasicTCB TypesPackage.
-- Because only essential features of this package need to be shown,
-- it is not included formally in this apendix.

stbtype NamString Type is
STRING (1 .. MaxNamed StringLength); - see 2 - 3.2.2

For additional discussion refer to Sections 2 - 3. and 2 - 3.6.

2 - 3.7 Pacord Types

All restrictions and implications inherent in the types of a component of a
record are implicit for that cxaponent.

Guideline:
1. In the declarations of records, assign default values to the record

components to avoid reference to undefined variables.

Examples: The following examples illustrate clearly readable and
understandable mnemonic record type declarations.

-- The following declarations in this section are located in
-- both the access and array types versions of
-- package AccessControl List TypesPackage. Because only essential

- features of this package need to be shown, it is not included formally in
- this apendix.

type Named_Object RecordType is
record

Name : BasicTCBTypesPackage. Name of Object _'ype - see 2 - 4.1
:= Basic_TCB_Types Package. BlankNameString; - see 2 - 3.2.1

C-24

APPgDID C
Mapping Of TB Relevant Ada Constructs and Features T o
The Reference Manual For The Ada Proqrammin, Lacr~ae

SensitivityLabel
MandatoryAccess_Control._TypesPackage.

Sensitivity labelType
:= Mandatory_A cess_Control_'lypesPackage.

ScrubbedSensitivityLabel; - see 3 -3.1.3

Authorized Named Individuals List
NamedIndividuals-ListType - see 2 - 3.6 and 2 - 3.8

:= ScrubbedNamedIndividualsList; - see 2 - 3.2.1

Authorized Groupsof_Named Irxiividuals_List
see 2 - 3.6 and 2 -3.8

Gmo of_Named-IKividualsList _Type
:= ScrubbedGroupsofNamed_IndividualsList; - see 2 - 3.2.1

Unauthorized Named Individuals List :
NamedlividualsLisype - see 2 - 3.6 and2 - 3.8

:= ScrubbedNamedIndividuals List; - see 2 - 3.2.1
end record;

type NamedIndividual RecordType is
record

Name : BasicTCBTypesPackage.
Nameof_IndividualType - see 2 - 4.1

Basic TCBTypes_Package. Blank Name-String; -- see 2 - 3.2.1

Sensitivity _abel
Mandatory Access_Control TypesPackage.

Sensitivity _abelType
Mandatory_AccessControlTypesPackage.

ScrubbedSensitivitylabel; -- see 3 - 3.1.3

Named ObjectsList :
Named_ObjectsList_ Type - see 2 - 3.6 and 2 - 3.8
:= ScrubbedNamedObjectsList; - see 2 - 3.2.1

end record;

type Group _of NamedIndividualsRecordType is
recoxrd

Name : Basic TCBTypesPackage.
Name ofGrpofIndividualsI -pe - see 2 - 4.1

Basic TCB Types Package. Blank NameString; - see 2 - 3.2.1

C-25

APPEND:X C
.appb,- f TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Pogran-rin Lancruae

Sensitivity Lanel
Mandatory_ Accss_ControlTypesPackage.

Sensitivity Label Type
:- Mandatory_AcOess_ControlTypes Package.

Scrubbed_ Sensitivity label; - see 3 - 3.1.3

4amedobj ectsList :
Named_ObjectsList Type - see 2 - 3.6 and 2 - 3.8

:= ScrubbedNamedobjectsLList; - -ee 2 - 3.2.1
end record;

2 - 3.7.1 Discriminants

No additional Ada-specific impact on TCBs

2 - 3.7.2 Discriinant traints

No additional Ada-specific impact on TCBs

2 - 3.7.3 Variant Parts

No additional Ada-specific impact on TCBs

2 - 3.7.4 Operations of Pacord Types

No additional Ada-specific impact on TCBs

2 - 3.8 Access Types

The access type in Ada is roughly equivalent to the pointer type in Pascal
in that it is used to create and manage dynamic storage.

Dynamic storage is a pool of memory, or heap, that is used for storing data
whose demand for memory varies during program execution. It is a useful
mechanism that can provide a convenient and flexible means of managing
memory when the need for memory is constantly changing.

Access types are used in Ada to implement dynamic storage constructs, like
linked lists and queues, which are convenient ways of managing a given
systen's continually varying demands for memory. "An implementation may
(but need not) reclaim the storage occupied by an object created by an

C-26

APPENDIX C
Mapping Of TCE Relevanft Ada Constructs ana Features To
The Reference Manual For The Ada Piram,-inq lantaae

allocator, once this object has become inaccessible" [ANSi/1XII-S-D-1815A-
19833. In addition, Ada has the pragma CNTROLED, which -'specifies that
autaatic storage reclamation imst not be performed for objects designated
by values of the access type, except upon leaving the innermost block
statement, subprogram body, or task body that encloses the access type
declaration, or after leaving the main pragm" [ANSI/MIL-STD-1815A-i983].
Also, "if an object or one of its subcomponents belongs to a task type, it
is considered to be accessible as long as the task is not teanninated,"
Ada's access types can promote an Ada TCB system's design, inplim T ation,
and maintenance.

Guidelines:
1. Determine whether each data structure should be. inplemented for

efficient memory usage (dynamic), or for efficient execution (static),
This detennination should be done as early as possible in the
developaent of h TCB system, preferably in the TCB's requirements
specification.

2. Avoid using access types and their corresponding objects in areas where
aliasing might o=ur i parameter pasing.

3. Avoid using acass types in task types. The reason for this is
twofold: .. To pryevent the dynnic creation of tasks. 2. The lack of
experience with and understanding of passing tasks as parameters in
subprogrcm calls.

4. Monitor the implementation of dynamic storage during preliminary and
detailed design reviews and code walkthroughs. At times the need for a
new dynamic data structure will not be identified until design or
coding. The need for and use of these new dynamic data structures also
shald be monitored during preliminary and detailed design reviews and
code ,akthroughs.

5. The TCB's dynamically stored data that is about to be collected by
Ada's garbage collection should be protected by deleting the data just
before it is collected as garbage. That is, sensitive data that may be
accessed must be reoved from memory before the memory is deallocated.
Also menmory -hould be scrubbed just before it is dynamically allocated
with Ada's new statement. These additional checks will nipinge on
system performance.

6. Avoid aliasing that can be introduced with access types. Minimize the
r ber of ao;ess type objects that point to any node [ASOS 1987].

C-27

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Prrarin g e

7. Avoid using the pragma CONTRDLLED. Any use of the pragma 001fl
should be reviewed during design reviews and code walkthroughs.

Elwples: The following examples illustrate clearly readable and
understandable mnemonic access type declarations. To ensure that
the meory allocated to a node is scrubbed, the components of a
node's record type should be initialized to scrubbed values, as
shown below. Also, ensure that a node record is set to scrub
values before it is placed back in the heap, i.e., before nothing
points to it any longer.

- The following declarations in this section are located in the acoess
- types version of pacge AccessControlList Types Package. Because only
- essential features of this package need to be shon, it is not included

-- formally in this appendix.

type NamedObjectsList Type;
tre Nameq Objects List Pointer_T ype

is access Named Objects_ListType;

type Named Objects List Type is
record

Name : Basic TOB TypesPackage.
Name of ObjectType - see 2 - 4.1

- BasicTCB Types Package.
Blank_Name_String; - see 2 - 3.2.1

Next : NamedObjectsListPointerType null;
end record;

type Nared Obj ectsACLLTvpe;
type Named Objects_ACL_Pointer_Type

is acoess NamedObjects ACL Type;

type Named Objects_ACL_Type isrecord
NamedObject ACL Record

Named ObjectRecord Type
:= ScrubbedNamedObject ACL_Record; - see 2 - 3.2.1

Next : Named Objec-s ACLPointerType

end record;

C-28

7-PD1.D: C
Flappinm Of TCZB Relevnt Ada Constrxats and Fea. ,, es To
The Refere-nce Manua-' For The Ada Prqzraunn Lancrua e

type NamedIndividuals ListType
type NamedIrividuasList Pointe_Type

is acwNamedIndividuals_Lst Type;

type NamedIrdividuah sLisTyp is

Name :BasicTCBTypes Package.
Name ofmividual Type -see 2 - 4. 1

:Basic_TCBTypes-Package.
Blank_ Nam Stri;- see 2 - 3.2.1

Next :1aNamdIdividualsListPointer .Type nrull;
end recrd;

type NamedIndividuals ACL_Type,
type NamedIndividualsACLPointerfType

is ac--ss NamedIndividuals ACL Type;

type NamedIndiv,,idualsL ACL Type is
rrd

NamedIndividual ACLRecord
NameidIndividualRecord, Type

:= ScrubbedNamed 1IdividualACLRecord; -see 2 -3.2.1

Next :Nam-ed-IrdividualsACLPointer _Type

end recrd;

type Groups ofNamedIndividualslastType
type Groups ofNa1TdIndividuals'List Pointer,_Type-

is accss Gr-oups_ofNamedindividualsList_,Type;

type Groups__ofNamdIdividua1s _ListType is

Name : BasicWCBTypes_,Package.
Namei ofGrc;of Idividuals Type; -see 2 - 4.1

BasicICETypesPackage.
BlankName String; -- see 2 - 3.2.1

* f.,,,-.-.)1-..,~A T, A , I..~. T 4c-
4-

'D-4 --- rrh rr.,

end record;

C-29

Mapping~ 0.f TCE Relevant- Ada-- Construats ary- Features 'I-
The Ref erencze Manual For The Ada Progrmrri Lancquape

t-ype Groups of _Named-lnz3ividualsAMLype;
type Groups_2ofNameIIndividualsACLiointer Type

is aces Groups ofNamedIndividuasACLTlype,

type Groups_oqfNamedIrwividuals_ ACIType is

Group of Named-Indlividuals ACL RecorLd
Group__of_Naed_-IndividualsRecordType

=Scrubbed-Group ofNamed IndividualsACLRecord;
-see 2 3.2. 1

Next : Groups of NamedIrividuals ACL Pointer Type
: = r&LU;

en reord;

2 - 3.8.1 Irxxzxplete Type Declaratians

No additional Ada-specific inpact on TCBs

2 - 3.8.2 Cperatin of Access Types

No additional Ada-specific i]Tpact on TCBs

2 - 3.9 eclarative Parts

No Ada-specific inpact on TCBs

C-30

APPEND!): C
Mapping Of ? Relevant Ada Consructs anj Features It
The Reference Mlarual For The Ada- Proramuin u ancaae

2 - 4. Names and Expressions

This chapter of the IUM discusses the use of identifiers as names_, combining
names into expressions, and rules for evaluation of both names and
expressions. The areas of primary interest to the development of TCBs are
Nams (Section 2 - 4.1) and Allocators (Section 2 - 4.8).

2 -4.1 Names

The selection of names can promote the code' s readability,
understandability, and maintenance.

Guidelines:
1. Name data types and objects with clearly readable and understandable

mnemonics.

2. Any data item or group of data should have its own symbolic name that
promotes its readability and undemtandability [ASOS 1987).

Exaiples: The following examples illustrate clearly readable and
understandable mnemonic names.

-- The following type declarations in this section are located in
- package Basic TCB Types Package. Because only essential features of this
- package need to be shown, it is not included formally in this appendix.

subtype Name of Object_Type is NameString Type; -- see 2 - 3.2.2

Name of Object : Name-of ObjectType
BlankNameString; -- see 2 - 3.2.1

subtype Name-of Individual_Type is NameStringType; -- see 2 - 3.2.2

Name of Individual : Name_of Individual Type
:= Blank_NameString; - see 2 - 3.2.1

subtype Name of GroupofIndividuals Type is NameString Type;
-- see 2 - 3.2.2

1CL= WI. j.L VUP _9.;. ,,CL-.%J1 &V.J4 L UUCL.

Name_of Graup of Individuals_Type
:= Blank_Name_String; -- see 2 - 3.2.1

C-31

APDI>: c
Mappinm Of TCB Relevan't Ada Construncs and Features Tr

he Reference Manual Fcr The Ada Prczznarrmicaq

- 4.1.1 index emponets

No additional Ada-specific impact on TCBe

2 - 4.1.2 Slie

No additional Ada-specific impact on TCBs

2 - 4.1.3 Selected CoupxnIts

No additional Ada-specific impact on TCBs

2 - 4.1.4 Attributes

No additional Ada-specific irpact on TCBs

2 - 4.2 Literals

No Ada-specific intact on TCBs

2-4.3 Aggregates

No Ada-specific inpact on TCBs

2 -4.3.1 Record Aggregates

No Ada-specific inpac on 'lUBs

2 - 4.3.2 Array Aggregates

No Ada-specific impact on TCBs

2 - 4.4 Expressicns

No Ada-specific impact on TCBs

C-32

ApPKDI: C
Mapping Of TCE Relevant Ada Constructs and Features To
The Reference Yoanua2 For The Ada Prozaraimminq ainquage

2 - 4.5 Operators and Epression Evaluatiori

No Ada-specific imact on TCBs

2 - 4.5.1 iLngial operators and Shrt-Ciruit mibl Fus

No Ada-specific impact on TCBs

2 - 4.5.2 Relational Operators and Membership Tests

No Ada-specific impact on TCBs

2 - 4.5.3 Binary Adrg Operators

No Ada-specific impact on TCBs

2 - 4.5.4 Unary Ading Operators

No Ada-sTecific impact on TCBs

2 - 4.5.5 Mlktiplying Operators

No Ada-specific impact on TCBs

2 - 4.5.6 Higest Prece Operators

No Ada--specific impact on TCBs

2 - 4.5.7 Accuracy of Operations with Real Operands

No Ada-specific impact on TCBs

24 4.6 Type orvesira.

The use of type co-version violates data abstraction, by confusirg the
meaning of objects whose types are converted.

C-33

APP CO: C

Yirppin. Of 'ICB Relevant Ada Construc-s and Features T*c
Te Reference -Manual For The Aria Prora'=-ranc LnaYa

Guideline:
1. Avoid using type conversion in implementing a TCB system.

2. Security aspects of the use of type conversion should be reviewed
during design reviews and code walkthrcxghs.

2 - 4.7 Qualified Expressions

No Ada-specific inpact on TCBs

2 - 4.8 Allocators

Guidelines:
1. Ensure that when using allocators the initialization recomerdations

(Section 2 - 3.2.1) are taken into consideration. This will prevent
programs from operating on objects that are not initialized.

2. Minimize using allocators. Refer to Section 2 - 3.8 for further
discussion of access types.

2 - 4.9 Static Expressicns and Static Subtypes

No Ada-specific impact on TCBs

2 - 4.10 Universal Expressicr

No Ada-specific impact on TCBs

C-34

APPENTDIY C
Maping Of T Relevant Ada Constructs and Features 7c
The Referene Manua- For The Ada 1r Tu'ThrcL _ 1anquaqCe

Z - 5. Statements

This chapter of the IRM describes the eight types of Ada statements. These
are assignment (with special case for arrays), conditional (if), case, locp,
block, exit, return, and goto. For the most part, these are the standard
kinds of statemnts found in most modern day programmuing languages.

2 - 5.1 Simple and Cqmpound Statements - Sequenies of StatmmEts

Gudeines:
1. Statements should satisfy the following criteria: (1) no aliasing, (2)

no side effects, and (3) no nonlocal variables. These criteria are
good software engineering practice, and as such should not require
extra programming effort. These criteria are necessary in that each of
them, if not met, may cause an unintended change to be affected during
the course of the program execution. These unintended changes may
cause an erroneous, or at least. unexpected, result.

2. Ada statement semantics should support the general goals of program
clarity and unambiguous execution [ASOS 1937].

2 - 5.2 Assigrment Statement

No Ada-specific impact on TCBs

2 - 5.2.1 Array Assignments

No Ada-specific impact on TCBs

2- 5.3 If Statements

In compound if statements, the compiler's order of evaluation could cause
side effects.

Cuideline:
1. The order of evaluation in cmpourd if statements must be forced by

using the short circuit forms, and then and or else.

C-35

APPENDIx C
Mappina Of TCB Re- evant Ada Constructs and Fez-ures Tc:,
The Ref erence M_-Tua. For The Ada Proqaim nq _gTaqe

5.4 Case Statzme.nts

The use of the others choice may allow an error that would have been caught
at capile time. For example, if the "alternative" expression is an
enumeration type that was expaded and if the additional cases were not
added to the case statement, then the case statent would not compile if
the others choice were not used.

Guideline:
i. Avoid using the others choice in case statements, particularly, when

the "alternative" expression is an enumeration type.

2 - 5.5 Iocp Statements

No Ada-specific impact on TCs

2 - 5.6 Block Statements

No Ada-specific impact on TCBs

2 - 5.7 Exit Statements

No Ada-specific impact on TCBs

2 - 5.8 Return Statements

The leaving of a subprogram or accept statement needs to be clearly
traceable to a single return statement.

Guideline:
1. All subprograms and accept statements should have a single return

statement for leaving their scope of execution.

2 - 5.9 Goto Statements

Goto statements provide the means for a program to transfer control, in an
unstructured manner, of its operation elsewhere in the program. The larger
the mdule, the more potential problems that .to statements can present.
In particular, kdesired redirection of program execution may be inserted
that is hard to track. Because this transfer of control may be unregulated,
ensuring the security of a TCB system is very difficult. Also, Ada provides

C-36

LT-PPDX C

Mapping Of . Relevant Ada Constructs an6 Features T-Cz,
The Reterence .Manual For The Ada Fro-. fn !ePncaualee

more structured control structures (e.g., for and while loops) that make
using goto statements unnecessary.

Guielinies:
1. Avoid using Goto statements in any system inplementation, especially

that of a TCB.

2. Security aspects of proposed goto statements should be addressed as
early as possible in the development of a TCB system, preferably in its
prelimnazy and detailed design phase.

3. Security aspects of all goto statements should be reviewed during
design reviews and code walkthroughs.

C-37

A-LIPEh"OI C
Mapping Of TCB Relevant Ada Constructs and Features Tt
The Ref erence a0nua For The Ada Proramm-ing Lancuage

2 - 6. Subprograms

This chapter of the IRM defines the mechanism for describing subprograms
(technically, procedures and functions), the mechanisms for their
invocation, and the manner of parameter passing. In the absence of
ocrurrency, as with other aspects of the Ada language, most aspects of
subprogram declaration and invocation are equivalent with respect to other
languages. Sane specific differences that are relevant to Ada are the
issues of subprogram declarations (Section 2 - 6.1), formal parameter modes
(Section 2 - 6.2): and rameter "aliasing" (Section .2 - 6,4).

Guideines:
1. Subprograms should have only one entry point and only one exit point to

promte testing and maintaining the subprogram.

2. Avoid side effects in subprograms, e.g., cn global data (non-parameter
data), by reference to as well as modifying the global data within a
subprogram [ASOS 1987].

3. Avoid creating large subprograms because thoroughly testing large
subprograms is more difficult than testing small subprograms. That is,
avoid creating subprograms with a larger number of possible logical
paths (i.e., transfers of control of program execution), which is
typical in large subprograms. The use of a lai.ge subprogram should be
justified in the preliminary and detailed design reviews and code
walkthroughs.

4. No subprogram, and especially no large ;ubprogram, should contain goto
statements. Tne use of a goto statement should be justified in
preliminary and detailed design reviews and code walkthroughs.

6.1 Subprogram Declaraticns

Equivalently named subprograms with the same parametzr type profile are
allowed because t2e scopi g rules in Ada c early define wl.1ch subprogam is
visible at aiy point in the program text.

Guideline:
1. Justify equivalently named subprograms from a humvan viewpoint because

the additional cTplexity of ovexloaded rames could cause difficulty in
the software development rocess. The equivalent -ving= of subproarams
should be monitored during prelimainary and detailed design reviews and
coe walkthroughs.

APPDDIX C
Mappin Of TCB Relevant Ada Corstructs and Features To
The Reference Manual For The Ada Prorammnc Lanuacie

2 - 6.2 For-mal Parameter Modes

Guideline:
1. Include the definition of the default values for cut parameters, akin

to that described in Secation 2 - 3.2.1 for abject declarations. Doing
so helps to prevent erroneos programs.

2 - 6.3 Su4muvram Bodies

Data present in the data objects declared within a subprogram remains in the
memory containing the subprogram's activation record after program execution
has left the subprogram. Mherefore the data should be scrubbed from the
memory just before the scope of the subprogram is left.

Guideline:
1. Scrub data present in the data objects declared within subprograms

before returning from a subprogram's call.

2 - 6.3.1 Conformarce Pules

No additional Ada-specific impact on TCBs

2 - 6.3.2 Inline Epansicrn of Subprograms

No additional Ada-specific impact on TCBs

2 - 6.4 Subprogram Calls

No additional Ada-specific ipact on TCBs

2 - 6.4.1 Parameter Associations

Guideline:
1. Aliasing across subprogram boundaries must be minimized. Harmful

aliasing may occur when formal parameters are assumed to represent
distinct variables, but actual parameters supplied are not distinct
rgAO 19871

C-39

APPENDIX): C
Mapping Of T = Relevant Ada Constructs and Feat.ures Tc
The Reference Manual For T-he Ada Progranuan Lanaae

2 - 6.4.2 Default Parameters

Guidelires:
1. Use named parameter association to improve readability and

understandability of subprogram calls.

Example: This exanple illustrates named parameter association.

procedure Search-File (File : in out AccessControl_LIstTypesPackage.
ACLFile_Type;

Key : in Name;
Index : cut FileIndex);

SearchFile (File => NamedObjectsAccess_ControlListManagerPackage.
ACL_File,

Key => "Smith , J"l,

Index => Record_Entry);

2. Default parameters may be used when a subprogram has parameters whose
actual values do not change over most calls.

Example: This example from package TT_10 illustrates default parameters.

procedure CREE (FILE : in cut FILE ;PE,
MODE : in FILE MODE = OTFILE;
NAME : in STRING loll
FORM : in STPING : "");

TEX_10. CREATE (FILE => Named Objects AccessControl_List Manager Package.
ACL File);

2 - 6.5 FIUr on SubprOgrair

Function subprograms should be truly functional, which is determined by the
following two guidelines.

Guidelines:
3. Prohibit functions fran containing either input or output operations

(Chapter 14 of the LR4) to be consistent with the fundamental
characteristics of functions, i.e., to return only a single value [ASOS
1987).

2. Function subprograms should not reference any nonlocal (i.e., global)
variables.

C-40

APPENDIX C
Mapping Of T- Relevant Ada Constructs ancj Features Tr
The Reference Manua! For The Aaa P ra=-lno Lanquaae

2 - 6.6 Parameter and Result Type Profile - Overloading of

For the discussion of overloading refer to Section 2 - 6.1.

2 - 6.7 Overloading of Cperators

For .the discussion of overloading refer to Section 2 - 6.1.

C-41

APDPNDIX C
Mapping. Of TCME Relevant Ada Construct-s and Features To
The Reference Manual For The Ada Pcr ano Lanciaage

2 -7. Pacaer

This chapter of the IRM discusses with the specification of packages as a
means to encapsulate data and subprograms into a single structure. The use
of packages directly supports the notion of abstract data types, a com~n
iecanim in software engineering used to reduce program complexity. The
following software engineering principles are discussed in this section:
data abstraction, information hiding, modularity, and localization.
Cempilation of specifications is discussed in Package Specifications and
* Declarations (Section 2 - 7.2).

Ada's data abstraction mechanism are well suited to represent the data
objects in a system's design, namely, that of a TCB. They serve the
conceptual manipulation of the data objects in a relatively high-level of
abstraction without regard to their underlying representation. Ada allows
data to be abstracted with abstract data types. An abstract data type is a
construct that "denotes a class of objects whose behavior is defined by a
set of values and a set of operations" [Booch 1987A, p.613]. Ada's two
primary features that promote the creation of abstract data types are its
strong data typing facilities (which is discussed above) and its packaging
mechanism. A package can be used to define an abstract data type by
encapsulating its underlying data types and the operations associated with
the abstract data type. Using Ada's data abstraction techniques aids the
representation of data objects in the problem space of any system, including
a TCB. "Abstraction aids in the maintainability and understandability of
systems by reducing the details a developer needs to know at any given
level" [Booch 1987B, p.33]. This sound software engineering technique car,
promote an Ada TCB system's design, implementation, and maintenance.

Guidelines:
1. Use packages to enforce visibility rules of data accessibility [ASOS

1987).

2. Use Ada's data abstraction nechanisms to represent data objects in a
INC system's design. Identify and implement abstract data types in the

design by encapsulating them in packages. That is, the package
specification should contain an abstract data type declared as a
(limited) private type, and those operations that can be performed on
objects of this abstract data type. No direct access to data
structures encapsulated by such packages should be allowed, i.e.,
access to these data structures should be performed indirectly through
the operations provided in the package specification.

3. Data objects should be created using Ada's strong data typing
facilities and its packaging mechanism, which promote the

C-42

APPERDIX C
Mapping Of .B Relevant Ada Constructs and Features To
The Reference Manaal For The Ada Proaranmu lanc aage

understandability, maintainability, and reusability of a system's
design and code.

4. The fundamental data abstractions should be identified early,
preferably during the TCB system's requirements specification. Their
ip1 entation should be m=itored during preliminary and detailed
design reviews and code walktbougbs.

Ada's information hiding facilities complement its -data abstraction
capabilities. Whereas abstractions extract the essential details of a given
level, "the purpose of hiding is to make inaccessible certain details that
should not affect other parts of a system" [Ross, Goodenough, and Irvine
1975, p.67]. "Information hiding therefore suppresses how an object or
operation is implemented, and so focuses our attention on the higher
abstraction" [Booch 1987B, p.33]. Two Ada constructs that are well suited
for implementing information hiding are packages and private types.
"Packages can be used to hide information from the rest of the program while
making explicit the interface with other program parts. This has the
advantage that implementation details of each package can be changed by
altering only its body, and that the rest of the program may be understood
without reference to these details" [Nissen and Wallis 1984, p.122].

Hiding the information about the implementation of the data abstraction of a
data object is achieved in Ada by encapsulating the abstraction in a
package, i.e., by hiding the implementation -)f the object and controlling
access to the object so as to encourage and enforce the abstraction. This
typically is done with the use of private types and limited private types.
In particular, Ada's private types enable the focus to be placed on higher-
level real-world abstractions rather than on the details of an
inplementation. The following implicit operations may be performed on
private types: assignment, tests of equality and inequality, explicit type
conversion, membership tests, type qualification, and the use of selected
ccnponents for the selection of any of the private type's discriminant. For
limited private types, though, only those operations defined in the
corresponding package specification are allowed. "Private types prevent
misuse of structures by users, presenting them only with the abstract
operations appropriate for the abstractions involved" [Nissen and Wallis
1984, p.131]. For more detailed information on private types, refer to the
Ada language reference manual [ANSI/MIL-STD-1815A-1983).

An example of using Ada's information hiding (and data abstraction) would be
to implement a package that defined a linked list structure. Only those
details required by a user of the linked list package would be provided in
the package specification (data abstraction), e.g., the operations allowed
on the linked list. The implementation, though, of the linked list would be

C-43

APPEDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Erogr-iummnc Lanauae

hidoen inside tne package body. The user of the package does not need to
know how the linked list is inplemented; therefore, information on its
implerentation is hidden from the user.

The understandability of system are enhanced "when, at each level of
abstraction, we permit only certain cperations and prevent any operations
that violate our logical view of that level" [Boodh 1987B, p.33]. Thus,
this sound software engineering technique can promote an Ada TCB system's
design, implementation, and maintenance.

Guidlines:
1. As much as possible of the implementation detail should be hidden in

the body of the package that corrso to an abstract data type.
That is, Ada's information hiding facilities should be used to
complement its data abstraction capabilities by making inaccessible
certain details that should not affect (i.e., be visible to) other
parts of a system. The use of information hiding should serve to
minimize the compromising of the system's software design and
structure. That is, it should localize logically related
implementation details of the abstract data type, and thus minimize
coupling and maximize cohesion in the system.

2. Information hiding should be implemented with the two Ada constructs,
packages and private types. This inplementation should be monitored
during preliminary and detailed design reviews, and code walithroughs.

3. The underlying data structures that constitute an object of an abstract
data type should not be directly accessible. That is, the data
structures should be accessible only indirectly through the subprograms
specified in the object's package specification, that define the
operations available to be performed on the object.

Modularity provides the mechanism for collecting logically related
abstractions. It is used to create the structure of an object that makes
the attainent of some purpose easier. Modularity is parposeful
structuring, which is usually achieved in a large system by decmposing the
system top-down with modules that are either functional (procedure-oriented)
or declarative (object-oriented) [Booch 1987B, p.34]. It is composed
preferably of existing reusable bottam-up software components. This
structuring should be performed to minimize the coupling between modules
(i.e., minimizLng dependencies between modules), and to strengthen the
cohesion within modules (i.e., the coaponents of a given module are
functionally and logically dependent) [Booch 1987B, p.34].

C-44

APPENDIX C
Mapping Of TCB Relevant Ada Constructs arri Features To
The Reference Manual For The Ada Pr-,xTranrim Lanruacie

Localization is the collecting of logically related camputational resources
in one physical module that is sufficiently independent of other modules.
localization thus helps to create mdules that exhibit loose coupling and
strong cohesion.

The principles of modularity and localization directly support modifiability
and understarability [Booch 1987B, p.34]. Any given module should be
understandable and relatively independent of other modules. Design
decisions localized in given modules limit the effects of a modification to
a small set of modules. Thus, the use of modularization that limits the
interconnections among program modules, and the localizing of logically
related resources into modules are sound software engineering techniques
that can promote an Ada TCB system's design, implementation, and
maintenarne.

Gudeines:
1. Name packages and subprograms with clearly understandable and readable

mnemonics.

2. Use modularization and localization to create packages and their
subprograms so that they exhibit loose coupling between the subpr ram
and packages, and exhibit strong cohesion within their respective
implementations. In contrast to modularizing, logically related
crmptational resources should be localized by collecting them into a
package and its subprograms. Localize design decisions in packages and
subprograms to minimize rippling side effects of a modification to a
small set of modules.

3. Logically related data abstractions should be collected into a class of
packages.

4. Modularity and localization should be evaluated during preliminary and
detailed design reviews and code walkthroughs.

2 - 7.1 Package Structure

No additional Ada-specific impact on TCBs

2 - 7.2 Package Specificatic and Declarations

Ada provides the ability to compile package specifications during the design
stage of system developmnt. This aids in the early checking of the system
requirement specifications and design, e.g., checking the relationships and
interactions between modules before system development progresses into the

C--45

APPEDIX C
Mapping Of TCB Relevant Ada Constructs arid Features To
The Reference Manual For Mw Ada P rMoa TanMua

coding stage. Thus, the quality of the requirement specifications and
design is prcmoted by using package specification cxrpilation.

Guideines:
1. Package specifications should be ccmpiled during the design stage of

Ada system developmnt to check the consistency and quality of the
design.

2. Mhe system requirment specifications and design process shculd use
this capability -to check the relationships arid interactions between
modules before system developnerit progresses into the coding stage.

3. In package specification documentation include the specification of the
effects produced by each subprogram defined in the package [ASOS 1987).

Exanple: This exanple illustrates data abstraction, information hiding,
modularity, and localization achieved with package specification
and declarations.

with BasicTTpes Package;
with AccessControlList Types Package;
pad)ag Named ObjectsAccess_ControlListManager Package is

pro re GetNamed Obj ectACLRecord
(Name of Cject : in BasicTCBTypesPackge.Name of OjectType; - see 2 - 4.1

Named Object ACL Record : Cut

AccessControl List Types Package.
Nameq ObjectRecordType); - see 2 - 4.1

o Inser. NamedObject ACL Record
(Named ObjectACL Record : in

AccessControl List Types Package.
Named bjectRecord Type); - see 2 - 4.1

proceIure Delete_NamedObject ACL Record
(Name of bject : in BasicTCBTypes Package.

Name of ObjectType); - see 2 - 4.1

Overflow Access Control List : exceptin;

Access itmrl list is Nll : epxtic;

C-46

APPEDIX C
Mapping Of TM Relevant Ada Constructs and Features To

Rheere n u For The Ada Proaranincr lanquage

private

end Named_ObjectsAccess_ ontrolList Manager Package;

package body Named_Objects AccessCotrolList Manager Package is

- By declaring the Named Objects ACL (see 2 - 12.4) in the
- body of this package rather than in the specification,
- it is hidden from the user of this package. Thus, the user
- can gain only indirect access to it throgh the suIprograns
- declared in the specification. The typical list manipulation
- cperations (e.g., as illustrated by Booch 1987A and
- Feldman 1985) are only provided in the package body.

- ypical list manipulation cperations

p Ize GetNamed Object ACL Record
(Name of Object : in Basic TCB_ Tpes Package.

N _ofCj _ectType; - ee 2 - 4.1
Named Object ACLRecord: cut

AccessCntrol List Types Package.
Named Object_RecordType) is - see 2 - 4. 1

begin -GetNamed ObjectACLRecord

- Sequence through the Named Object ACL using the typical
- list manipulation operations to locate and get the
- indicated NamedObject ACLRecord.

e Get Named ObjectACLRecord;

C-47

APPNDIX C
Mapping Of TCB Relevant Ada Constructs and Features 13o
The Reference Manual .For M Ada a Mge

procedure Insert_NamedObjectACLRecord
(Named_ ObjectACLRecord : in

AccessC~trol List Types Pacage.
Named ObjectRecord- Wpe) is see 2 - 4.1

begin - InsertNamedObjectACLRecord

- Sequence through the Named Object ACL using the typical
- list manipulation operatins to locate the appropriate
- place to insert the indicated Nameq Object ACLRecord.
- This location j-, detenmined by a predefined mechanism,
- e.g., alphabetizing by the Named_Object ACLRecord.Name,
- or more crudely by a sinple (FIFO) stack or (FIID) queue.

end Insert NamedObject ACLRecord;

proceure DeleteNamed ObjectACLRecord
(Name of Object : in BasicTCB_TypesPackage.

NameofObject Type) is - see 2 - 4.1

begin - DeleteNamedObject ACLRecord

- Sequence through the Named Object ACL using the typical
- list manipulation cperations to locate, scrub, and delete
- the indicated Namq Object ACLRecord.

end Delete_NamedObject ACLRecord;

end Named ObjectsAccess-ControlLdstManager-Package;

C-48

APTN4DIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For Mg Ada ProcaXMix LgnMge

Global variables are a convenient means of passing data between different
parts of a system. "Global variables" may be implemented in Ada in a
package specification or a subprogram specification. The primary advantage
of using global variables is that some efficiency in data transfer within
the program is typically introduced. This advantage is almost always offset
by the probles caused by using global variables.

Guidelins:
1. he use of global variables should be avoided because they cause

difficulty in tracing accesses of and modifications to the variables.

2. Security aspects of proposed global variables should be addressed as
early as possible in the development of a TB system, preferably in its
requirement specifications.

3. Security aspects of all global variables should be reviewed during
preliminary and detailed design reviews and code walktbroughs.

2 - 7.3 akag Bodies

No additional Ada-specific inpact on TCBs

2 - 7.4 Private Type and Deferred Ctant Declaraticr

Refer to the discussions of data abstraction and information iding in
Section 2 - 7, Packages.

2 - 7.4.1 Private Types

For the discussion of the use of private types in packages, refer to Section
2 - 7.

2 - 7.4.2 C.raticns of a Private Type

Example: The abstract data type, Key Type, is created with the use of
the package Key ManagerPackage and its private type, KeyType.

C-49

APPENDIX C
Mappirg Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Proraming Lamnuaqe

package Key ManagerPackage is
type Key _ype is private;
Null, Key : costant Key Type;
pm P Ie Get Key (K : ut Key Type);
functio 11<" (X, Y : Key Type) retrn BOOLEAN;
function "+" (X, Y : Key Type return Key Type;

private
type Ke TYpe is no NATURAL;
Null.Key : onstant Key Type := 0;ed Key ManagerPaag;

pacoe body Key ManagerPackage is

Last Key : Key Type := 0;

prooedure GetKey (K : out Ksy Type) is

last_ Key := last Key + 1;
K := Iast Key;

&x Get_Key;

functimu "<" (X, Y : Key Type) return BOOIEAN is
begin

return NAWJRAT (X) < NaURAL (Y);
end It<";

functio n (X, Y : Key Type) return Key Type is
begin

retun ey _ype (NMrRAL (X) + NAURAL (Y));
erd "+" ;

end KeyManagerPackage;

For additi6nal discussion refer to section 2 - 7.

2 - 7,4.3 Deferred Onstants

i4o additional Ada-specific impact on 'IcBs

C-50

APM4DIX C
Mapping Of TCB Re3levant Ad,-A CorIstXs and Features To
Thbe FRefernoe Mnual orTe Ada P aRMMM ir Lanauae

2 -7.4.4 Limited Types

No additional Ada-specific imp~act on TCs

2 -7.*5 Eanple of a Table Management Page

No additional Ada-specific impact on TCHs

2 -7.6 E20nple of a Texct Harxilirxg Padioge

No additional Ada-specific bipact on Tas

C-51

AP.E3VDf> C
Napp:ng Of TCB Plevant Ada Constriucts and Features To
The Refe_-e MarI Fr The Ada Proerm-- Lanruae

2 - 8. visibility Rules

This dpter of the IM establishes rules for deterniing the visibility of
naes and identifiers in the Ada program text. For the most part, such
rules are applicable at the synitactic aond semantic piases of the analysis of
the Ada program text. The two sections of primrzy concern to software
development of TCs are Use Clauses (Section 2 - 8.4) and Renaming
Decblaratiof (Section 2 - 8.5).

2 - 8.1 Decarative Regicx

No Ada-specific impact on TCBs

2 - 8.2 Scope of Declaratimis

No Ada-specific impact on TCBs

2 - 8.3 Visibility
Guidelines:
1. Avoid using global variables to minimize side effects, but when they

must be used, restrict the visibility of global data through the
scorpng mechanism [ASOS 1987].

2. Avoid the nesting of subprogram declarations, so as to eliminate the
potential for the usage of global data other than that defined in the
main program [ASOS 1987).

2 - 8.4 Use Clauses

Ada's "use clause achieves direct visibility of declarations that appear in
the visible parts of named packages." The use of the use clause makes
identifying the origin of an invoked subprogram difficult. The impact on
testing is that the specification and definition of the invoked subprogram
are not accessible to a tester. Also, a similar effect, which is equally
adverse, occurs in maintenance when it is difficult to identify the origin
of the invoked subprogram.

Guideline:
1. Avoid using use clauses in Ada TCB system implementation.

C-52

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada PrU age

2 - 8.5 Rmaming Declarations

Ada's "renaming declaration declares another name for an entity." The use
of renaming makes identifying the origin of an invoked subprogram difficult.
The iupact on testing is that the specification and definition of the
invoked subprogram are rot accessible to a tester. Also, a similar effect,
which is equally adverse, occurs in maintenance when it is difficult to
identify the origin of the invoked subprogram.

Guideline:
1. Avoid using renaming declarations.

2. LImit the redefinition of operators. At least limit the scope in which
an operator is redefined (ASOS 1987].

2 - 8.6 The Package Staxard

No Ada-specific impact on TCBs

2 - 8.7 The Cotext of Overload Resolution

No Ada-specific impact on TCBs

C-53

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
'lhe Reference Manual For The Ada Prrrun Language

2-9. Tasks

This chapter of the]1M discusses the concuzrent programmin aspects of the
Ada language. Conaarrent programming with tasking is discussed in this
section. The discussion on system timing frm packmge CALENDAR is located
in Delay Statemnts, Wratiwi, ard Tim, (Section 2 - 9.6). Also of interest
are Sections 2 - 9.1 "'ask Sanecificatidm aM Task Bodies, 2 - 9.9 Task and
&try Attributes, and 2 - 9.3-1 kiared Variables.

In contrast to other languages, Ada incorporates its concurrent proqfra,,mng
mechanism, tasking, as an integral part of its definition. Corica-n-t
processes, in partioalar tasks, are processes that may execute in per'.le_
on multiple processors or independently scheduled processes on a "'b'le
processor. That is, they involve the simultaneous, or timeshared, e', n:.on
of processes. Tasks may interact with each other, and one task may -us,e-e L'
execution pending receipt of information fran another task or the occurre-
of an external event. Despite the problems associated with concurrent
pL and Ada's tasking, it is a useful mechanism that likely is
required for the effectik7" implementation of a TCB system. Thus, Ada's
tasking can prmcte an Ada TCB system's design, implementation, and
maintenance.

Guidelines:
1. Miniize the use of tasking [ASOS 1987).

2. Manage camiuncation between tasks in a TMB system with discretionary
access controls (e.g., access control lists) and/or mandatory access
controls (e.g., sensitivity labels), so as to prevent the introduction
of covert channels. Ccmmunications between tasks (e.g., rendezvous)
should be logged in the audit trail.

3. Tasking implementations shoul.d avoid using access types (for dynamic
storage) and global and sharai variables.

4. Management of intertask cczmLications should be addressed as early as
possible in the developmcent of a TCB system, preferably in its
requirement specifications.

5. Implementation of these intertask comumcations should be monitored
during the TCB system's preliminary and detailed design reviews and
code walkthroughs.

C-54

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Proqramina La ngage

2 - 9.1 Task Specificaticrs and Task Bodies

The cmpilation of task specifications offers the same benefits as the
compilation of package specifications which were discussed in Section 2-
7.2.

2 -9.2 Task Types and Task (bjects

Management of intertask camm.nications is a very important aspect of the use
of tasks. The use of semaphores for this purpose is presented in the
following example.

Example: This example illustrates trusted generalized mechanisms to
control and regulate intertask commmications with semaphores.

with Mandatory Access_Control Types Package; - see 3 - 3.1.3
with Mandatory AccessControl ManagerPackage; - see 3 - 3.1.3
with Audit_TrailManager Package; - see 3 - 3.2.3

Max Number of Tasks Allowed : in NAIRAL := 1;

package GenericCounting Semaphore Manager Package is

task type Counting _emaphore_Task_Type is
entry Allow Task_toPass (

Other Task MAC Record : in
Mandatory Access_-Control Types-Package.

MACRecordType); - see 3 - 3.1.3

entry ReleaseTask (
OtherTask MAC Record in

Mandatory_Access_Control, TypesPackage.
MACRecord Type); - see 3 - 3.1.3

erI Conting aphore_TkaskType;

end GenericCounting Semaphore Manager Package;

C-55

APPENwI> C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Procmgmin, !=Fjge

package body GenericCountirg_SemaphoreManagerPackage is

task body Counting_peaphoreTaskType is

Number ofTasks :IN1IEE := MaxNumber ofTasksAllwe;

LocalMAC Record
MandatoryAccess_Control_.TypesPackage. - see 3 - 3.1.3

MAC Record Type;

Other Task MAC Record
Mandatory AccessControl Types ackage. - see 3 - 3.1.3
MAC Record Type;

b-in - Counting SpeapkoreTaskType
loop

select
when Number of Tasks > 0 =>

accet Allow_Task_toPass (
Other Task MAC Record : in

Mandatorycess_Control TApes Package.
MACRecordType) do - see 3 - 3.1.3

if MandatoryAccess_ControlManagerPackage.
Sensitivity LabelsMatch - see 3 - 3.1.3

(LocalMACRecord. Sensitivity_Label,
OtherTask MAC Record.

SensitiVityLabel) then

AuditTrailManagerPackage. - see 3 - 3.2.3
LogSubjectsAccess to Object in Audit Trail (

LocalMACRecord, OtherTaskMACRecord);

Aumber of Tasks := Numer of Tasks - 1;
end if;

end Al.lowTask to Pass;

or
when Number-of Tasks < Max Number of Tasks Allowed

=> accept Release Task (
OtherTask MAC Record : in

M.dato'y - sCont io l_~s kge.
MACRecord Type) do - see 3 - 3.1.3

C-56

APPENDIX C
Mapping Of TCB Relevant Ada Constnucts and Features To
The Reference Manual For The Ada Programmi-m Lancuae

if Mandatory AccessControl Manager Package.
Sensitivity labels_Match - see 3 - 3.1.3

local_MAC_Record. Sensitivity Label,
Other Task MAC Record.

Sensitivity label) then

AnditTrail Manae Package. - see 3 - 3.2.3
PogSubjects A esto_Object in A.it Trail (

Local MAC Record, Other Task MAC Rcrd)

Number of Tasks := Number of Tasks + 1;end if;
end Release Task;

end select;end loop;
end Counting SemporeTask _Tpe;

end Generic_ Counting Semaphore ManagerPackage;

2 - 9.3 Task Exwcxtion - Task Activation

For additional discussion of tasking refer to Section 2 - 9.

Guideline:
1. Initialize all object declarations in task bodies. This includes

conponents of record types.

2 - 9.4 Task Depedec - Termination of Tasks

For additional discussion of tasking refer to Section 2 - 9.

Glide] ine:
1. Scrub all objects declared in a task before terminating te task.

2 - 9.5 Entries, Entry Calls, aId Accpt Statements

Guideline:
1. Ensure that entry calls and their corresponding accept statements are

monitored by checking the sensitivity labels associated with the
respective tasks involved in a given rendezvous. Also, the rendezvous

C-57

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada EMM n Lancuacge

should be logged in the audit trail. For additional tasking guidelines
refer to Section 2 - 9.0. Exanples illustrating this guideline are in
Sections 2 - 9.2 and 2 - 9.12.

2 - 9.6 Delay Statemnts, Duration, and Time

Ada provides access to system timing through the padmge CALENDAR. Only
system timing is available from pakage CALEDR. To get timing fran an
external clock a new package miust be developed, probably with representation
clauses (more fully detailed in Chapter 13), which introduce their own
complications.

Guidelines:
1. Use of Ada's package CALE1R should be minimized in Ada TCB system

inplementation; it will probably be required for time stanping.

2. Security aspects of using package CALENDAR should be addressed as early
as possible in the development of a TCB system, preferably in its
requirement specifications. In particular, account for the possible
failure of the system tming available from pack CALENDAR to
correspond precisely to the system clock.

3. Security aspects of using package CALENDAR should be monitored during
preliminary and detailed design reviews and code walkthroughs.

2 - 9.7 Select Statements

2 - 9.7.1 Selective Waits

Guideline:
1. Avoid the use of selective waits: they introduce indeterminary. The

introduction of indeterminacy, especially with selective waits, should
be monitored during preliminary and detailed design reviews and code
walkthroughs.

2 - 9.7.2 Conditioal Entry Calls

No additional Ada-specific inpact on TCBs

2 - 9.7.3 Timed Entry Calls

No additional Ada-specific impact on TCBs

C-58

APPENDIX C
Mapping Of TCB Relevant Ada Constructs ar Features To
The Reference Manual For The Ada Programn,,ng Lrnuaqe

2 - 9.8 Priorities

No additional Ada-specific impact on TCBs

2 - 9.9 Task and Entry Attributes

Tasks arv entries have three attributes as specified in the IRM:
T'CALTAME, T'ITERMINATED, and E'COUNT. The use of these dynamic attributes
enables the passing of information in a manner which is much more difficult
to keep track of than the normal manner of parameter passing.

Guideline:
1. Avoid using task and entry attributes. If used, the use should be

monitored during preliminary and detailed design reviews and code
walktroughs.

2 - 9.10 Abort State ts

For additional discussion of tasking refer to Section 2 - 9.

Guideline:
1. Scrub all objects declared in a task before aborting the task.

2 - 9.3.1 Shared Variables

Shared variables are the major construct in tasking that will have to be
restricted (although perhaps simulated through use of other constructs using
synchronization) in the software development of TCBs.

Guidines:
1. Avoid using shared variables because they cause difficulty in tracing

accesses of and modifications to the variables.

2. Security aspects of proposed shared variables should be addressed as
early as possible in the development of a TCB system, preferably in its
requirement specifications.

3. Security aspects of all shared variables should e reviewed during
preliminary and detailed design reviews and code waLkthroughs.

C-59

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada ProagTang Language

2 - 9.12 ExauPle of Tasking

Exauple: This example illustrates trusted generalized mechanism to
control and regulate intertask cmmnications with mailboxes.

with MandatoryAccessControl Types Package; - see 3 - 3.1.3

generic

type Message Type is private;

Max_ Nmber ofMessages : in NAURA := 24;

packge GenericMailboxManager Package is

prcedur Send (Message : in Message Type;
Local MAC Record : in

MandatoryAccess_Control Types Package.
MACRecordType); - see 3 - 3.1.3

procedure Receive (Message : out MessageType;
Local MAC Record : in

MandatoryAccess_Control Types Package.
MACRecordType); - see 3 - 3.1.3

end GenericMailboxManager Package;

with Mandatory_AccessControlManagerPackage; - see 3 - 3.1.3
with Audit TrailManagerPackage; -- see 3 - 3.2.3
package body GenericMailboxManager Package is

task Manager_ Task is

entry Deposit (Message : in MessageType;
Other Task MAC Record : in

MandatoryAcesControlTypesPackage.
MACRecordLType); - see 3 - 3.1.3

entry Remve (Message : out Message Type;
Other Task MAC Record : in

MandatoryAcsControlTypes Package.

end ManagerTask;

C-60

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference 10anual For The Ada Prlra__n- Language

procedure Send (Message : in MessageType;
Local MAC Record : in

Mandatory_ _essCotrl,._TypesPackage.
MACRecordType) is - see 3 - 3.1.3

bein
Manager_Task. Dqosit (Message, LocalIAMCReoord);

end Send;

procedure Receive (Message : out Message Type;
Local MAC Record: in

MandatoryAccess_Control Types_ I,ckage.
MACRecordType) is - see 3 - 3.1.3

begin
Manager_Task. Remove (Message, LocalMACRecord);

end Receive;

task body Manager Task is

aftype MailboxSlot_IndexType is fNTER range
0 .. (Max Numberof_Messages - 1);

HeadSlot : MailboxSlot_Index_Type := 0;
Tail_Slot : Mailbox_Slot_Index_Type := 0;

MessageNumber : INTEGER ranga 0 .. MaxNumber of Messages;

Mailbox : array (MailboxSlotIndex Type) of MessageType;

LocalMAC Record :
ManjatoryAccess_Control Types Package. - see 3 - 3.1.3

MAC RecordType;

Other Task MAC Record
MandatoryAccessControlTypesPackage. - see 3 - 3.1.3

MACRecordType;

begin
loop

select
wben Message_ Number < MaxNumber of Messages =>

CA% oit Mop, sage : =
Other Task MAC Record : in

Mandatory Access_ControlTypesPackage.
MAC_Record._Type) do

- see 3 - 3.1.3

C-61

APPENDIX C
Mapping Of TMB Relevant Ada Constructs and Featares TcThe Reference Manual For The Ada Pran g Lenuaae

if Mandatory Access_ControlManagerPackage.
Sensitivity labels_Match - see 3 - 3.1.3

(LocalMACRecord. Sensitivity Label,
OtherTaskMAC_Record.

SensitivityLabel) then

Audit Trail ManagerPackage. - see 3 - 3.2.3
LogSubjectsAccess toObject in Audit Trail (

LocalMACRecord, OtherTaskMACRecord);

Mailbox (Head_Slot) := Message;

Head Slot := (Head Slot + I) rod
Max_Ntmar _of Messages;

MessageNumber := MessageNumber + 1;
end if;

end Deposit;

or
when MessageNumber > 0 =>

accept Remove (Message out Message_ Type;
Other Task MAC Record : in

Manratory Acc-ss_Control TypesPackage.
MACRecordType) do

-- see 3 - 3.1.3

if MandatoryAccessControlManagerPackage.
Sensitivity LabelsMatch - see 3 - 3.1.3

(LocalMACRecord. Sensitivity_Iabel,
OtherTask MAC Record.

Sensitivity Label) then

AuditTrailManagerPackage. - see 3 - 3.2.3
LogSubjectsAccess to Object in Audit Trail (

Local_MACRecord, Other_TaskMACRecord);

Message := Mailbox (Head_Slot);

Tail Slot := (Tail Slot + 1) mod

C-62

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manua" For The Ada PrEMMuiM Lancruaqe

MessageNumber : = MessageNumber - 1;
end if;end Remove;

end select;
end loop;

end Manager Task;

end GenericMailboxManagerPackage;

C-63

APPENDI: C
Manping Of TCB Relevant Ada Ca:structs and Features 7r
The Reference Manual For The Ada Pr ramming Languag-

2 - 10. Program Stnkwture and Czpilaticr Issues

This chapter of the iMM describes the units of ompilation, attends to the
ordering regauients for program libraries, and touches briefly on the
results of optimizations. Reusable code is discussed in Section 2 - 10.4
7h Program I1bar .

2 - 10.1 ompilation Uits - Library Units

Guideline:
1. Use libraries to greatly facilitate good configuration management [ASOS

1987).

2 - 10.1.1 Ozntext Clauses - With Clauses

No Ada-specific impact on TCBs

2 - 10.1.2 Exaiples of Cumpilaticm Units

No Ada-specific impact on TCBs

2 - 10.2 Subunits of Oompilaticn Units

2 - 10.2.1 Examples of Subunits

No Ada-specific impact on WcBs

2 - 10.3 Order of Cimpilatic

No Ada-specific impact on TCBs

2 - 10.4 T Program Library

The program library should contain reusable code. The inplementation of an
Ada TCB system can be aided with the reuse of evaluated code that has been
demonstrated to sufficiently satisfy the security class of the given WCB.
Ada's generic units are helpful in creating reusable code. "Generics
provide a powerful means by which a program may be 'factorized' in order to
shorten code, and reduce incidence of errors, by avoiding redefining items
which appear in several places in the program" [Nissen and Wallis 1984,

C-64

APPD"DI>: C
Maping Of TCB Relevant Aa Construct and Features TV
The Reference Manual For The Ada Progaa.-amm Lancpjaoe

p.181). Mien code is reused, the number of errors in the code is reduced,
because errors in such code are fixed when they are identified. Additional
time and effort is required during the design phase of developing reusable
code for a TCB system. The additioral time and effort will pay for itself
when the resulting reusable code is used in multiple instances in the
current TCB and future 'I s. Thus, the rease of evaluated code is a sourn
software engineering technique that can promote the efficient production of
an Ada TCB system's design, inpleamstation, and maintenance.

Gui lines:
1. Use existing evaluated reusable software components as -much as possible

to create modular software to promzte efficient Ada-TCB system's
design, impleventation, and maintenance. Tmt is, reuse the code
and/or the design that has been demonstrated to sufficiently satisfy
the security class of the given Ada TB system.

2. Create, manage, and use libraries of evaluated reusable software
ccnponents. Libraries of evaluated reusable Ada source code should be
established and managed by the security administrator, wto supervises
acoess to and use of the libraries. An example of such a library is
discussed in the paper "A Sxmcre SDS Software Library" [Hadley, et. al.
1987].

3. Ada's generic units should be taken full advantage of uten creatixg
this reusable code, as exemplified in Booch's Software C omjts with
Ada [1987A).

4. Monitor the implementation of these libraries of evaluated reusable
software components during preliminary and detailed design reviews ar
code walktbroughs.

5. Errors found in code taken fra libraries of evaluated reusable
software components should be reported to the library manager.

2 - 10.5 Elaboration of Library Units

No Ada-specific impact on TCBs

2 - 10.6 Program optimization

No Ada-specific inipact on rI Bs

C-65

APPENDIX C
Mapping Of TCE Relevant Ada Constructs and Features To
The Reference Manual For T"he Ada Proqrinm Lancuae

2 - 11. BE4pticrs

This chapter of the IlM defines the exception constructs, and mechanisms,
and rules of handling exceptions within program. A general discussion of
exeptions is located in this section. Other sections of interest are 2-
U1.4 B iqizm Handling, 2 -- 11.4.1 Emoeqticm 1Raisd During the Eom~pticri
of Statnts, and 2 - 11.7 S9;1-ing Checks.

Ada handles program execution errors or other exceptional situations with
its exception handling mechanism. An exception may be. used to alter control
of program execution (e.g., handling the exception outside a subprogram or a
task were the excption was raised).

Using pragma SUPPRESS prevents the raising of exeptions for selected
check, which can serve to monitor the proper execution of the program
during runtime. Ada code generated when using pragma SUPPRESS cannot be
trusted to work as expected because Ada compilers currently are not
validated when pragm SUPPRES is used.

Guidelines-:
1. Exception handling mist be managed in a TCB system. Handling an

exception between the point at which the exception is raised and the
place where it is handled (especially if they are in separate modules),
mnst be enforced in a TCB system with discretionary access controls
(e.g., access control lists) and/or mandatory access controls (e.g.,
sensitivity labels). Each exception should be labeled so that the
initiator of the exception is knon by its exception handler.

2. Only define exceptiois to handle events that occur infrequently [ASOS
1987].

3. Handle frequent occurrences of bad data by direct coding in subprograms
[ASOS 1987].

4. Security aspects of the various exception handling operations should be
addressed as early as possible in the development of a TCB system,
preferably in its requirement specifications.

5. These operations should be stipulated by the TCB system requirements
specification or design documents.

6. Tvnf t-ti-- r hez or~tins should be managed eiurin-t preliminary
and detailed design reviews and code walkthroughs.

7. Avoid using pragma SUPPRESS.

C-66

C
Mapping Of TCB Relevant Ada Coistructs and Features To
The Reference Manual For The Aa Prozramnting La.uage

Example: This example illustrates trusted exception handlirg that allows
program execution to continue in a trusted manner.

type Name_Type is private;

type ACLRecord Type is private;

package Generic_AocessControlList ManagerPackage is

prcdre GetACLRecord
(Name : in NareType;

ACL_Record : out ACL_ RrdIype);

procedure InsertACLRecord
(ACL Record : in ACLRecordLype);

Irmcmr DeleteACLRecord
(Name : in NameType);

Overflow AccessControl List : exrqpticn;
AccessControl List is Null : exiepticn;

private

emd Generic_Access_rontrL 2_List Manager Package;

with Access Control_List TypesPackage;
with MandatoryAccess_Control_TypesPackage; - see 3 - 3.1.3

with~~~~~~~~~~ see,-~ 3~'.a('4 r ~ ~ Pr1~~ - 3.1. 3
with Audit Trail Manager Package; - see 3 - 3.2.3
package body Generic AccessControlList IKuagerPackage is

C-67

APPD04DIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Prqram.inQ Language

- The user can gain only indirect access to instantiated
- access control list through the subprograms declared in the
- package specification. Thus the access control list data
- structure is hidden from the user of this package. The
- typical list manipulation operations (e.g., as illustrated
- by Booch 1987A and Feldman 1985) are only provided in the
- package body.

ExceptionRaiserRecord:
MandatoryAccess_Control Types Package. - see 3 - 3.1.3

MACRecordType; - Initialize ExceptionRaiser Record.

ExceptionHandler Record
MandatoryAccess_Control_.TypesPackage. - see 3 - 3.1.3

MAC_RecordType; - Initialize ExceptionHandlerRecord.

- Typical list manipulation operations

procedure Get_ACLRecord
(Name : in Name Type;

ACLRecord : aut ACLRecord Type) is

ExceptionName
MandatoryAccess_ControlTypesPackage. -- see 3 - 3.1.3

Exception NameType :=
MandatoryAccessControl Types Package.

Others-String;

begn -GetACLRecord

- Sequence through the access control list data structure
- using the typical list manipulation operations to locate
- and get the indicated access control list record.

C-68

APPENTDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual Por The Ada Pror mni Lancuaae

ezx~ticn

uhen others =>
Audit TrailManagerPackage. - see 3 - 3.2.3

log Exceptionin_A zitTrail
ExceptionName,
ExceptionRaiserRecord,
Exception HandlerRecord);

end GetACLRecord;

procedure Insert ACL Record
(ACL Record : in ACLRecord Type) is

ExceptionName
MandatoryAccess_Control TypesPackage. - see 3 - 3.1.3

Exception Name Type :=
MandatoryccessControl Types Package.

Others _String ;

begin -InsertACLRecord

- Sequence through the access control list data structure
-- using the typical list manipulation operations to locate
- the appropriate place to insert the indicated
- access control list record. This location is
- determined by a predefined mecanism, e.g., alphabetizing by
- the "name" of the access control list record, or more
- crudely by a simple (FIFO) stack or (FILD) queue.

- heck for the exception OverflowAccess_ControlList.
- If the exception is to be raised, then set the
- Exception Name and ExceptionRaiserRecord.

C-69

APPEnDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Programni Lanmaacie

excetioni

when Overflow Access ControlList =>
-X.t Trail MAnager Packge. see 3 - 3.2.3

LogException in AuditTrail (
ExceptionName,
ExceptionRaiser_Record,
ExoeptionHandler_Record);

when others =>
AuditTrail ManagerPackage. - see 3 - 3.2.3

Log Exception in Audit Trail
ExceptionName,
ExceptionRaiser_Record,
ExceptionHandlerReccrd);

endi InsertACLRecord;

prooedre DeleteACLRecord (Name : in NameType) is

ExceptionName
MandatoryAccess_Control Types_Package. - see 3 - 3.1.3

Exception NameType :=
Mandatoryces_ControlTypesPackage.

Others-String;

begin - DeleteACLRecord

- Sequence through the accress control list data structure
- using the typical list manipulation operations to
- locate, scrub, and delete the indicated
- access control list record.

C-70

Ma.ping Of TCB Relevant Ada Constructs and Features To
The Referenoe Manua2 For T"he Ada Prograamm.& nquqe

- Check for the exception Access Control List is Null.
- If the exception is to be raise, then set the
- ExoeptionName and Excepti-L_ Raiser Record.

emmpticn

when Acoessontrol List is Null =>
AuditTrail ManagW ackage. - see 3 - 3.2.3Icg-Exception in Audit Trail

ExceptionName,
ExceptionRaiserRecord,
Exception HandlerRecord);

when others =>
AuditTrail Manager Pacge. - see 3 - 3.2.3

log xoeption in AuditTrail
ExceptionName,
Exception RaiserRecord,
Exception HandlerRecord);

end DeleteACLRecord;

end Generic AccessControlList Ymnage-r Package;

2- 11.1 Exction Declaratio

No additional Ada-specific impact on TCBs

2- 11. ..

No additional Ada-specific impact on TCBs

C-71

APP, _1:. C
Mapping Of TCB Relevant Ada Construc.t and. Features To
The Reference Manual For "he Ada Proram Lanq age

2 - 11.3 Raise Stataments

No additional Ada-specific impact on TCBs

2 -3..4 Eoetian Hrxling

Exceptions in Ada are handled by the innermost execution frame or accept
statement enclosing the statement that caused the exception. (Exceptions
within accept statements are discussed in Section 2 - .1.5.) Because the
Ada mechanism for propagating exceptions is dynamic, it deserves special
attention as discussed in Section 2 - 11.

Guieins:
1. Implement exceptions in a well-disciplined manner. Because of Ada's

possible dynamic binding of exceptions to handlers, place restrictions
on the implementation of exception handling to ensure that all control
paths can be determined statically. At the TCB boundary, all
exceptions mzt be handled or explicitly propagated. Similarly,
implicit propagation of exceptions is disallowed within subprograms.
An others clauses is placed in each subprogram to ensure that any
exception signaled within its body will be handled. These restrictions
will make control flow more predictable [ASOS 1987].

2. When a subprogram's execution is aborted because of an exception, the
values out and in out parameters of array and record types is dependent
on the parameter passing mechanism employed by the compiler. To foster
a consistent approach, ASOS requires that the handler of an exception
assume nothing about the values of the parameters [ASOS 1987].

3. Because the effects of Ada exceptions from predefined operations are
not well specified, handlers shall not assume anything about the values
of result variables involved in such predefined operations [ASOS 1987).

2 - 11.4.1 Excepticns Raised During the Execution of Statements

A major difficulty with exceptions in the Ada language is the dynamic manner
in which exceptions are propagated and the resulting canplexity that derives
from attempting analysis durii g testing of programs. This is a specific
example of the general discussion in Section 2 - 11.

2 - 11.4.2 Excetions Raised During the Elaboration of Declaratics

No additional Ada-specific impact on TCBs

C-72

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Pro=-ramim, Lan=,age

2 - 1.5 Eoeians Raised During Task Clammication

Exceptions raised during task commnication are camplicated more by the
difficulty in handling tasking in Ada than by the use of exceptions in
tasks.

Guide1ine:"
1. Avoid handling an exception outside of the task that raises the

exception. The use of such exceptions should be monitored during
preliminary and detailed design reviews and code walkthroughs.

2 - 31.6 Exrmticrs and Oiiticn

No additional Ada-specific impact on TCBs

2 - U.7 -i Checks

Using pragma SUPPRESS prevents the raising of exceptions for selected
checks, which can serve to monitor the proper execution of the progran
during runtime. Ada code generated when using pram SUPPRESS cannot be
trusted to work as expected because Ada compilers currently are not
validated when pragma SUPPRESS is used.

Guideline:
1. Avoid using pragma SUPPESS.

C-73

APPDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manua) For The Ada Programirin Lanquaae

2 - 12. Generic Units

This chapter of the IM describes the structure ard application of generic
units within Ada. The use of generic constructs is one of the more novel
innovations in the Ada language. Generic units chcuild be used in creating
reusable code, as was discussed in 7he Progra Library (Section 2 - 10.4).

Guideline:
1. Use generic units to write generalized software that will perform

operations on classes of data types [ASOS 1987).

2 - 12.1 Generic Decaratians

No Ada-specific impact on TCBs

2 - 12.1.1 Generic Format COjects

No Ada-specific hapact on TCBs

2 - 12.1.2 Generic Fonal Types

No Ada-specific impact on TCBs

2 - 12.1.13 Generic Formal S o

No Ada-specific impact on TCBs

2 - 12.2 Generic Bodies

No Ada-specific impact on TCBs

2 - 12.3 Gnric Instantiation

No Ada-specific Impact on TCBs

2 - 12.3.1 Mat~dirq lbles for Formal Objects

No Ada-specific impact on TCBs

C-74

APDD'P DI X C
Yzpping Of TCB Relevant Ada Corstructs and Features Tc
The Reference Manua) For The Aaa aormina l age

2 - 12.3.2 Matcdin Rules for Formal Private Types

No Ada-specific impact on TCBs

2 - 12.3.3 Matdcdn Rules for Formal Scalar Types

No Ada-specific impact on TCBs

2 - 12.3.4 Matding Rules for Formal Array Types

No Ada-specific impact on TCBs

2 - 12.3.5 Matching Rules for Fonal Acess Types

No Ada-specific impact on TCBs

2 - 12.3.6 MatdMing Pules for Formal

2 - 12.4 Ecmiple of a Generic Pckage

Eanple: This example illustrates a generic package for multiple instances
of an access control list, with instantiations of the package.

generic

type Name_ Type is private;
type ACLRecordType is private;

package GenericAccessControlList Manager Package is

rGet ACL Record
Name : in Name Type;
ACLRecord : out ACL_Record Type);

C-75

APPEDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Proararnin. Lanquacie

py xdxm Insert ACL Record
(ACL Record : in CL_RecordType);

", I re Delete ACL Record
(Name: in NazeType);

Overflow Access Control List : exmoeticn;
AccessCntrol Listis_Null : exorq*icn;

private

end GenericAccessControlList ManagerPackage;

with AccessControlList Types Package;
with MandatoryAocessControTypesPackage; - see 3 - 3.1.3
with Mandatory AccessControl Manager Package; - see 3 - 3.1.3
with Audit Trail Manager Package; - see 3 - 3.2.3
package body GenericAccessControlList Manager_Package is

- The user can gain only indirect access to instantiated
- access control list through the subprograms declared in the
- package specification. Thus the access control list data
- structure is hidden fram the user of this package. The
- typical list manipulation operations (e.g., as illustrated
- by Booch 1987A and Feldman 1985) are only provided in the
- package body.

- Typical list manipulation operations

procedure Get_ACLRecord
(Name : in Name_ Type;
A_. Record : curt ACERecordfvoe ' is

C-76

APPEDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Programminci Lancuaqe

begin - GetACLRecord

- Sequence through the acoess control list data structure
- using the typical list manipulation perations to locate
- and get the indicated access control list record.

end GetACLRecord;

prceRre InsertACLRecord
(ACL Record : in ACL_Record ype) is

bein - Insert_ACLRecord

- Sequence through the access control list data structure
- using the typical list manipulation operations to locate
- the appropriate place to insert the indicated
- access control list record. This location is
- determined by a predefined mechanism, e.g., alphabetizing by
-- the "name" of the access control list record, or more

- crudely by a simple (FIR)) stack or (FIEO) queue.

end Insert ACL Record;

proceure DeleteACL Record (Name : in Name _Type) is

b -in- Delete_ACLRecord

- Sequence through the access control list data structure
- using the typical list manipulation operations to locate,
-- scrub, and delete the indicated access control list record.

C-77

APPUMIX C
Mapping Of WCB Relevant Ada Constructs and Fesatures To
The Reference Manual For The Ada Prorammdr Language

end DeleteACLRecord;

end GenericAccessControlListManagerPackage;

- Instantiations of GenericAccessControlList Manager Package
package Named ObjectsAccessControl ListManager Package is new

GenericAcces_Control List Manager Package
(Nameiype => Basic TCB Types Package.

Name_ofObject Type,
ACLRecord Type => Access ControlListTypesPackage.

Named ObjectRecord_Type);

package Named IndividualsAccess ControlListManagerPackage is nv
Generic_AccessControl List ManagerPackage

(Name Type => BasicTCB TypesPackage.
Name of Object Type,

ACLRecord Type => AccessControlListTypes_Package.
Named IndividualRecordType);

package Groups_of_NamedIndividuals ACL Manager Package is new
Generic AccessControl List ManagerPackage

(Nane Type => BasicTCB Types Package.
Name of Object Type,

ACL Record Type => AccessControlList Types_Package.
Group of NamedIndividualsRecord _Type);

C-78

I

APPNDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Prorammino Larauacle

2 - 13. Reresentation Clauses and .plewentation- enent Features

This chapter of the IR4 discusses implementation-specific matters at a lx%,
level. Several of the constructs, such as representation clauses, length
clauses, enumeration representation clauses, and address clauses are on the
order of specific directives to the coupiler and would have no noticeable
effect on the execution of the resulting program. Interrupts are discussed
in Section 2 - 13.5.1. Machine code insertions (Section 2 - 13.8) and
interfaces to subprograms written in other languages (Section 2 - 13.9) may
introduce cmplications in developing TCBs. Also of interest to the
development TCBs is unchecked programing (Section 2 - 13.10).

Guidein:
1. The use of representation clauses and hiplementation-dependent features

should be avoided in Ada TCB system implementations.

2. Security aspects of using any representation clauses and
inplemntation-dependent features should be addressed as early as
possible in the develqzment of a TCB system, preferably in its
reuirement specifications.

3. The use of any representation clauses and inpleventation-dependent
features should be restricted to a minimum number of packages and
subprograms to assist in monitoring their use and to aid in system
portability.

2 - 13.1 Representation Clauses

No additional Ada-specific ipact on TCBs

2 - 13.2 Length Clauses

No additional Ada-specific impact on TCBs

2 - 13.3 Rpmeration 1opresentation Clauses

No additional Ada-specific impact on TCBs

2 - 13.4 Record Representation Clauses

No additional Ada-specific impact on TCBs

C-79

APPENDIX
Mapping Of ' Relevant Ada Constructs and Features To
The Referene anuaa For The Ada prgraM' Language

2 - 13.5 Address Clauses

No additional Ada-specific impact on TCBs

2 - 13.5.1 Interrupts

Interrupts provide asynchronous means of altering prograqn execution, so that
an external event can be handled by the system. This change in program
execution must be managed and documented.

Guidelines:
1. Each interrupt should be labeled so that the initiator of the interrupt

is known by its interrupt handler. Interrupts should be managed with
discretionary access controls (e.g., access control lists) and/or
mandatory access controls (e.g., sensitivity labels). Interrupts
should be monitored by logging them in the audit trail.

2. All interrupts that affect a -3 mist be raised within the TCB and
handled by the TCB.

3. Security aspects of the various interrupt operations should be
addressed as early as possible in the development of a TCB system,
preferably in its requirement specifications.

4. Implementation of these interrupt handling operations should be
monitored during the TCB system's preliminary and detailed design
reviews and code walkthroughs.

Examle: This example illustrates trusted interrupt handling.
Note that address clauses are not currently supported in %7 X Ada.

with landatoryAccessContro] TypesPackage; - see 3 - 3.1.3
packa Interrupt Handler_Package is

procedure GetCharacter (Char : out CHARACIER;
local MAC Record : in

Mandatory Access_ControlIypesPackage.
MCecordT -- see 3 - 3..3

.o r%

'-.<

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Prgrami angzuace

proodure Put Oracter (Car : in CRcnM ;
Tocal MAC Record : in

Mandatory Ames_Control, Types Package.
MACRecordLType); - see 3 - 3.1.3

end Intemrupjt erPackage;

with MandatoryAooess_Control_.ManagerPackge; - see 3 - 3.1.3
with Audit Trail Manager Package; - see 3 - 3.2.3
pac-ge body InterruptjlnlerPackage is

task Intern4pt_I-t Hxer Task is

pragma PRIOITY (4);
- must have at least the priority of the interrupt

entry Get Character franInterrpt 1input Address
(tChar : out OARACTER;

Other Task MAC Record : in
Mand~atory AccessControl, Types package.

MACRecordType); - see 3 - 3.1.3

entry Save Hardware Buffer Character (
Other Task MAC Record : in

Mandatory AccessControl Types package.
MACRecordJType); - see 3 - 3.1.3

- assuming that SYSTEM. ADLRESS is an InTDEER type
for Save HardwareBuffe_ Character use at 16#0020#;

end Interrupt Input Hiand1er Task;

task Interrp Witput Hiardler Task is

pragna PRIORIY (4);
- mst have at least the priority of the interrupt

Other Task MAC Record : in
Mandatory AccessControl, Types _package.

MACRecordType); - see 3 - 3.1.3

C-81

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada PEocra ini -4ngauae

entry Put haracter into Int ptutpt Addres (
Ciar : in dARACTER;
Other Tas: MAC Record : in

Mandatory ?oessControl, Types-Package.
MACRecord_'ype); - see 3 - 3.1.3

- assm-ing that SYSTEM. ADX1ESS is an flE1ER type
for DepositC2iaracterintoHardwareBuffer use at 16#0024#;

end Interrupt Output Handier Task;

procedure Get Qaracter (Car : out CRACTER;
localMAC Record : in

Mandatory AccesControl TypesPackage.
MAC_RecordType) is

- see 3 - 3.1.3
begin - Get_Character

interruptInput ander Task.
Get_ CaracterfromInerrupt Input Aress

(Ciar, local_MAC_Record);

end GetCharacter;

procedure Put Character (0ar : in aiRACIER;
local MAC Record : in

Mandatory Access_Control TypesPackage.
MACRecord Type) is

- see 3 - 3.1.3
bein - Pat Character

Interrupt-output _HandlerTask.
Put Character into InterzptOutput A dress

(Car, localMAC_Record);

end Put Character;

task body Interrupt_nput_HandierTask is

MaxSizeofInternal_InputBffer : constant POSITIVE
:= 64;

C-82

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada BrgrAjX Language

InternalInput_Buffer
array (I .. MaxSizeofInternalInputBuffer)

of CHARACTER;

Input PufferPointer : POSITIVE := 1;
Outputuffer Pointer : PITIVE : 1;

Buffer Count : INTEGER := 1;

Hardware Character Buffer : COARACER;
for lardware Character Buffer use at 16#0100#;

local_ _ut TaskMACRecord :
Mandatory Ac Control_ TypesPackage. - see 3 - 3.1.3

MAC_RecordType;

Other Task MAC Record
Mandatory Access_Control_ Types Package. - see 3 - 3.1.3
MACRecord ~ype;*

begin - Internpt Input HiarilerTask
loo~p

select
when Buffer Count > 0 =>

accept Get_ aracterfran Interrupt InputAddress
(Char : out CHARACTER;

Other Task MAC Record : in
ManatoryAccessControlTypesPackage.

MACRecord T Wp) do
- see 3 - 3.1.3

if MandatoryAccess_ControlManagerPackage.
SensitivitylabelsMatch - see 3 - 3.1.3

(LocalInputTak MAC Record.
Sensitivity LAbe1,

Other Task MAC Record.
Sensitivity -Label) then

Audit Trail ManagerPackage. - see 3 - 3.2.3
LogSubjectsAccess-to Object in Audit-Trail (
local_Input Task_MACRecord,
OtherTaskMACRecord) ;

Car := InternalInputaffer(
COitputBuffer Pointer);

C-83

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features Tt
The Referenoe Manual For The Ada Proramn= Language

Output uffer Pointer :=
cDatput Buffer Pointer mad

MaxSizeofInternalInputBuffer + 1;

BufferCount := Buffer Comt - 1;
ern if;

end GetCharacter_fran interrupt Input Address;

or
when Buffer Count <

Maxize_of_InternalIngut Buffer =>

acoept Save Hardware Buffer Character (
oter Tnsk RAC Recrd : in

MandatoryAcesControl TypesPackage.
MACRecord_Type) do - see 3 - 3.1.3

if Mandatory Access_ControlManagerPackage.
Sensitivity Labels_Match - see 3 - 3.1.3

IncalIrpft, TaskMACRecord.
Sensitivity _&e,

Other Task MAC Record.
Sensitivity- Label) then

Audit TrailManagerPackage. - see 3 - 3.2.3
LogSubjects_Access to Object in Audit Trail (

_ocalnputak_MACRecord,
OtherTaskMACRecord);

Internal InputBuffer(
InputBuffer Pointer)

HardwareCharacter_Buffer;

Input_Buffer Pointer :=
Input puffer Pointer mo

MaxSizeofInternalInputBuffer + 1;

Buffer Count := Buffer Count + 1;
end if;

end Save HardwareBuffer Character;
end select;

end loop;
end InterruptInput_HandlerTask;

C-84

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference M anual For The Ada Rojr aitinc Ianuaqe

task body Inter Wqt Haler_ Task is

MaxSize ofInternal_ Output-Buffer : constarit POSITIVE
:= 64;

InternalOutputBuffer
array (1 .. MaxSize ofInternalOutputBuffer)

of (HARACIER;

InputAufferPointer : POSITIVE : 1;
Output,__BfferPointer : POSITIVE := 1;

Buffer Count : INTEGER := 1;

Hardware Character Buffer : CHARACTER;
for Hardware Character Buffer use at 16WO200#;

HardwareCharacterBuffer isE~t BOOLEAN := UE;

LocalOutput TaskMACRecord :
Mandatory :AccsControl Tpes Package. - see 3 - 3.*1.3

MACRecordType;

Other Task MAC Record
Mandatory _AcesControl_ _Tpes Package. - see 3 - 3.1.3

MACRecordType;

begin - Interrupt OutputH-anler_ Task
loop

select
accept Deposithara-cter into HardwareBuffer (

Other TaskMAC Record : in
MandatoryAccessControl Types-Package.

MACRecordType) do - see 3 - 3.1.3

if Mandatory Access_ControlManagerPackage.
SensitivityLabels Match - see 3 - 3.1.3

LocalutputTiskMACRecord.
Sensitivity_Label,

Other Task MAC Record.
Sensitivity_Label) then

Audit TrailManagerPackage. - see 3 - 3.2.3
LogSubjectsAccess to ObjectinAudit Trail (

Local_Output Task_MAqRecord,
Other Task_MAC Record);

C-85

APPENDIX C
Mapping Of TCB Re]evant Ada Constructs and Features To
The Reference Manua! For The Ada Prorraancgn anc~uce

if Buffer Count > 0 then

Hardware Chavacter Buffer :=
Internail Output Buffer (

Outputuffer Pointerr

Output puffer Pointer :=
Outut pufferPointer mod

MaxSize_ofInternalOtput Buffer + 1;

Buffer Count := Buffer Count - 1;

else

HardwareClaracter Buffer is,,Eq~ty := TRUE;
end if;

end if;
end DepositCharacter intoHardwareBuffer;

or
when Buffer Count <

MaxSize_of_Internal-outputBuffer =>

accept PutCharacter into Interupt OutputAddress
(Char : in a1ARACIR;

Other Task MAC Record : in
Mandatory AccessControl_TypesPackage.

MACRecordType) do - see 3 - 3.1.3

if Mandatory Access_ControlManagerPackage.
Sensitivity LabelsMatch - see 3 - 3.1.3

Local Ou xtTaskMACRecord.
SensitivityLabel,

Other Task MAC Record.
Sensitivity Label) then

Audit Trail ManagerPackage. - see 3 - 3.2.3
LogSubjectsAccess toObject in Audit Trail (

Local_Otput Task_MAC_Record,
OtherTaskMACRecord);

InternalOutputBuffer(
Input _&fferPointer) := Char;

C-86

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference FManual For The Ada Pr rammingo LancIuaqe

Input_Buffer Pointer :=
InputPuffer Pointer nod

MaxSize of InternalOutput Buffer + 1;

BufferCount := Bufferount + 1;

if HardwareCharacterBuffer is-Emrpty then

Hardware Character Buffer :=
.... Intern_ -Outpt Bffer(

Output_Buffer_Pointer);

outptaiffer Pointer :=
Output pufferPointer nod

MaxSizeofInternalOutput Buffer + 1;

Buffer Count : = Buffer Count - 1;

HardwareCharacterBufferis Epty := T9m;end if;
end if;

end PutCharacter into _nerutoutputAddress;
end select;

end loop;
end Intsizipt outputHandlerTask;

end InterruptHandler_Package;

2 - 13.6 Change of Representation

The change of representation clauses introduces potential problems similar
to those associated with type conversion (Section 2 - 4.6).

Guideline:
1. The change of any representation clause should be monitored during

design reviews and code walkthroughs.

2 - 13.7 TPa kage System

No Ada-specific impact on -TBs

C-87

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manuai For The Ada Pro rMIn Languaqe

2 - 13.7.1 SysteDependent Named Numbers

No Ada-specific impact on TCBs

2 - 13.7.2 P g sentaticw Attribzs

No Ada-specific impact on TCBs

2 - 13.7.3 Representatin Attributes of Real Types

No Ada-specific impact on TCBs

2 - 13.8 Machine Code Insertions

One use of this feature is to insert calls to currently existing functions
(e.g., sort routines). A specification of the routines at the Ada
specification language level and establishing that the routines do not stray
from their specified behavior are necessary prerequisites to use of machine
code insertions.

Guideline:
1. New software camponents that have traditionally been written in machine

code (e.g., device drivers which handle sensitivity labels in input or
output operations) should be written in Ada. If "trusted" machine code
already exists, then it may be acceptable to use it rather than writing
new Ada code.

2 - 13.9 Interface to Other Ianguages

Ada provides the means to interface with other languages using the pragma
INIERFACE. Using multiple high-order languages, or using assembly language
with a high-order language, makes a system more difficult to understand.
The difficulty here is not with the pragma INIERFACE per se, but rather with
using more than one language in a system.

Guideline:
1. Avoid interfacing Ada with another language.

C-88

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Mnual For The Ada 2r ,pMir Lancaace

Exanple: This exanple illustrates the interface of Ada with Pascal.

package GraphicsLibrary_Package is
procedure Draw Circle

(enter : in CoordinatesType;
Radius : in DistanceType);

private
pragma IVTRFACE (PASCAL, DrawCircle);

end GraphicsLibrary Package;

2 -13.10 Ur hwe Pzmgauming

Ada provides two unchecked programming features, unchecked storage
deallocation and unchecked type conversion. "The predefined generic library
subprograms UNaECKD DEALILCATION and UNCECKED CONVERSIN are used for
unchecked storage deallocation and for unchecked type conversions"
,ANSI/MIL-STD-1815A-1983].

2 - 13.10.1 Unichecked Storage Deallocaticn

The only program-visible effect of using unchecked-deallocation is the
assigment of the access value null to the variable being deallocated. This
does not ensure that the variable is scrubbed before it is deallocated.

Guideline:
1. Avoid using the unchecked programmDing feature UNEED_DEA CTION.

2 - 13.10.2 Urchecked Type Qonversicns

One major difficulty with the use of unchecked type conversions is
specifving the transformation between the two types that takes place during
the conversion.

Guideline:
1. Avoid using the unchecked prograndng feature UNCHECKD_CONVERSION.

C-89

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada RnigMnMi'M Lanfuage

2 -14. IptOtu

This chapter of the IRM describes the mechanisms for input and output for an
Ada program and the management of file objects. The packages described
include procedures for the input of sequential, direct, numeric data, and
enumeration data. A general discussion of input and output operations is
located in this section.

The major obstacles to input and output are the lack of the semantics of
input and output, and the ability to do input and output anywhere within an
Ada program.

An example for handling input and output is provided in Section 2 - 14.7.

Guidelines:
1. Minimize the use of input and output [ASOS 1987].

2. Security aspects of all input and output operations, such as
maintaining the secrecy of the information between the TCB and
displays, disks, and tapes, should be addressed as early as possible in
the development of a TCB system, preferably in its requirements
specification.

3. The security of the TCB's input and output functions should be provided
with discretionary access controls (e.g., access control lists) and/or
mandatory access controls (e.g., sensitivity labels). All inputs to
and outputs from a T=B should be logged in the audit trail.

4. Security aspects of input and output operations should be addressed as
early as possible in the development of a TCB system, preferably in its
requirement specifications. These operations should be conscientiously
implemented as stipulated by the TCB system's requirements
specification, preliminary and detailed design reviews and code
walkthroughs.

2 - 14.1 External Files and File Objects

No additional Ada-specific impact on TCBs

2 - 14.2 Seqential and Direct Files

No additional Ada-specific impact on TCBs

C-90

APPEDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada Proairmir Lanruaie

2 - 14.2.1 File Management

No additional Ada-specific impact on TCBs

2 - 14.2.2 Seqwitial IrpIzt-COtpu

No additional Ada-specific impact on TCBs

2 - 14.2.3 Specification of the Package Sequ _ntia1O

No additional Ada-specific impact on TCBs

2 - 14.2.4 Direc Irp&-CutpXut

No additional Ada-specific impact on TCBs

2 - 14.2.5 Specification of the Pa Direct _10

No additional Ada-specific impact on TCBs

2 - 14.3 Text Inpt-Outpt

No additional Ada-specific impact on TCBs

2 - 14.3.1 File Management

No additional Ada-specific impact on TCBs

2 - 14.3.2 Default Input and Output Files

No additional Ada-specific impact on TCBs

2 - 14.3.3 Specificatin of Line and Page Ienrths

No additional Ada-specific impact on TCBs

C-91

APPENDIX C
Mappirg Of TCB Relevant Ada Constructs and Features Tc
The Refexeme arnual For The Ada Proqrarn Lanquage

2 - 14.3.4 Operaticr an Columns, Lines, and Pages

No additional Ada-specific ipact on T"CBs

2 - 14.3.5 Get and Put Frocszres

No additional Ada-specific impact on TCBs

2 - 14.3.6 Irpt-Outpt of C2aracters and Strings

No additional Ada-specific inpact on TCBs

2 - 14.3.7 Irpt-Output for Inteer Types

No additional Ada-specific inpact on TCBs

2 - 14.3.8 Irp&t- utput for Real Types

No additional Ada-specific irpact on TCBs

2 - 14.3.9 Input-Output for Er.mmation Types

No additional Ada-specific inpact on TCBs

2 - 14.3.10 Specification of the Package Text_10

No additrinal Ada-specific impact on TCBs

2 - 14.4 Ewetirs in Irpt-Output

No additional Ada-specific inpact on TCBs

2 - 14.5 Specification of the Package IO D o nstim

No additional Ada-specific irrpact on TCBs

C-92

APP='cIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Reference Manual For The Ada F rgMiM Laruiacte

2 - 14.6 lm level 1rput-0Xtput

No additional Ada-specific inpact on TCBs

2 - 14.7 Exmple of Input..-C.tQ

Ecample: This example illustrates trusted input and output.

with TEXT 10;
with MandatoryAccess_Control_Types_Package; - see 3 - 3.1.3
with Acoess ControlList 'TypesPackage;*

Max_Characters-inMessage : POSITIVE := 80;

package GenericSensitiveTextFileManager Package is

Sensitive Text File : TEXT I0. FILETYPE;
subtype Message Type is STRING(1 .. Max_Characters inMessage);

procedure PutLine (
Subject MACRecord : in

Mandatory Access_Control TypesPackage.
MACRecord'Type;

Named Object_MACRecord : in
MandatoryAccess_Control Types Package.

MACRecordType;

Message : in MessageType);

end GenericSensitiveTextFile Manager Package;

with Mandatory Access_Control ManagerPackage; -- see 3 - 3,1.3
with Audit Trail ManagerPackage; - see 3 - 3.2.3
package GenericSensitiveTextFileManagerPackage is

C-93

APPDEDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Referemnce anual For The Ada Promnrana Lann:acie

procdure t_Lne (
SubjectMAC_Record : in

Mandatory AooessiControl Types Package.
MACRecord_'Type;

NamedObject MAC Record : in
Mandatory AccessControl, T ypackage.

MACRecordType;

Message : in Message Type) is

begin - PutLie

if Mandatory Access_ControlManagerPackage.
Sensitivity Labels Match - see 3 - 3.1.3

(SubjectMACRecord. SensitivityLabel,
NamedObject MACRecord. Sensitivity Label) then

AuditTrail MnagerPackage. - see 3 - 3.2.3
Log SubjectsAccess to Object in Audit Trail (

Subject MACRecord, NamedObject MAC Record);

TEXT_10. i UT_LINE (SensitiveTextFile, Message);

end if;
end PutLine;

end GenericSensitiveTextFile ManagerPackage;

C-94

APPENDIX C
Mapping Of TCB Relevant Ada Constructs and Features To
The Referen: FManual For The Ada Prarinq Lnmuaice

2.1 Tailoring and Coifigurir Ada C opiler and Runtime System

This section does not have a corresponding chapter in the IRM. Nevertheless, it
is an important issue that should be addressed in the software develojmnt of TCB
systems.

Tailoring an Ada compiler or runtime system is the actual modification of the
code of the Ada ccupilation system [Baker 1988]. Configuration of an Ada
compiler or runtime system is the reselection of compiler options and parameters
provided by the Ada cxmpiler vendor. Tailoring and configuration may allow a
compiler or runtime system to run conveniently on various host and target
ccmbinations. The cmpiler will no longer be validated, hwever, and other
problems may be introduced during the tailoring or configuring process.
Modifying the Ada compiler or runtime system of a TCB by tailoring or configuring
should be avoided.

Guidelines:
1. Any tailoring or configuring of the Ada compiler or runtime system must be

done under the supervision of and with the approval of the TCB system
security administrator.

2. Security aspects of any tailoring of an Ada compiler or runtime system
should be addressed as early as possible in the development of a TCB system,
preferably in its requirements specification.

3. Any element of an Ada runtime environment that is tailored should be
subjected to the same evaluation criteria that are applied to the rjr being
developed.

C-95

APP D:x C
Mapping of Ada Usage to TCB Criteria

3. ' .PING OF ADA USAGE TO TICB CRPITMJA

This section provides a mapping of Ada constructs that would be appropriate to
the implementation of the TCB structures and functions defined in the TCSE. The
class B3 criteria are used as the template of the generalized TCB criteria,
because they are the highest level of security criteria under consideration.
Also, the Ada constricts mapped to these criteria can similarly be mapped to the
TCB criteria of lower security classes. The four TCB criteria subsections
considered are Security Policy, Accountability, Assurance, and Documentation.
For further discussion .of the various topics, refer to the TSEC.

GENERALTZED TM C~RTRA

"The class B3 TCB must satisfy the reference monitor requirements that it mediate
all accesses of objects, be tanperproof, and be small enough to be subjected to
analysis and tests. To this end, the TCB is structured to exclude code not
essential to security policy enforcement, with significant system engineering
during TCB design and implementation directed toward minimizing its complexity.
A security administrator is supported, audit mechanisms are expanded to signal
security-relevant events, and system recovery procedures are required. The
system is highly resistant to penetration."

3.1 Security Policy

A security policy describes how users may access documents or other information.
It is the set of laws, rules, and practices that regulate how an organization
manages, protects, and distributes sensitive information.

3.1.1 Discretionary Access Control

Discretionary access control provides a means of restricting access to objects
based on the identity of subjects and/or groups to which they belong. The
controls are discretionary in the sense that a subject with a certain access
permission is capable of passing that permission (perhaps indirectly) to any
other subject (unless restrained by mandatory access control). An enforcement
mechanism (e.g., access control lists) must allow users t- specify and control
sharing of those objects and must provide controls to limit propagation of access
rights.

C-96

APPF TDIX C
Mapping of Ada Usage to TCB Criteria

Guidelines for the use of Ada Constructs and Features:

Enforcement mechanisms that consist of lists, such as access control lists,
should be created with linked lists and queues, using either static or
dynamic storage constructs (e.g., using arrays or access types,
respectively). Though linked lists and queues are more typically
implented using dynamic storage cotruts created with Ada's access
types, which provide more efficient omrwry usage, linked lists and queues
created with arrays provide more efficient execution. In addition, the lists
should be represented by abstract data types, which consist of Ada's strong
data typing encapsulated in packages. The rwened constructs and their
discussion in Section 2.0 are as follows:

ACCESS TYPES 2 - 3.8
ARRAYS 2 - 3.6
PACKGES 2 - 7.
TYPES 2-3.

Example: This exanple illustrates a generic package specification for
multiple instarces of user identification and authentication
(The package body is in Section 3 - 3.2.1.)

with Mandatory Access_Control Types Package; - see 3 - 3.1.3
with GenericAccessControlListManager_Package;
generic

type Password rnp is private;

package GenericUserIdentificationandAuthenticationPackage is

procedur CheckPassword
(Password : in PasswordType;

Local MAC Record : in
Mandatory AccessControl. Types Package. - see 3 - 3.1.3

MACRecordType;

Password-is Valid : out BOOLEAN);

C-97

APPEDIX C
Mapping of Ada Usage to TCB Criteria

end GenericUser_Identification_and_Ajthenticatior._Package;

Use tasking to handle concurrent processes in more cxmplex TCB system where
multiuser and muiltisubject requirents (e.g., simultaneously monitoring
acoesses to control lists by multiple subjects) are present. Tasks are
discussed in Section 2 - 9.

When nonvolatile versions of major lists (e.g., aocess lists, need to be
accessed from disk or tape) protect. the security of input and oktput
operations with protocols that satisfy the class of the given TCB. Input
and output is discussed in Section 2 - 14.

3.1.2 Object Reuse

Object reuse is the reassignmet to scme subject of a medium (e.g., page frame
disk sector, magnetic tape) that contained one or more objects. TO be securely
reassigned, such media must contain no residual data from the previously
contained object(s). The TCB must assure that when a storage object is initially
assigned, allocated, or reallocated to a subject from the TCB's pool of unused
storage objects, the object contains no data for which the subject is not
authorized.

Guidelines for the use of Ada Constructs and Features:

The reuse of objects involves the management of memory used for storing
objects. Dynamic storage as well as static storage should be managed in a
secure manner. Also, objects should be represented by abstract data types,
which are implemented with Ada's packages and user-defined data types. Use
tasking and shared variables as required to manage object reuse when
concurrent processes are warranted for efficient multiuser and multisubject
TCB system operation. The recommended constructs and their discussion in
Secrtion 2.0 are as follows:

ACCESS rYPES 2 - 3.8
ARRAYS 2 - 3.6
PACKAGES 2 - 7.
TAS1M 2-9.
TYPES 2-3.

3.1.3 labels

A sensitivity label is a piece of information that represents the security level
of an object and that describes the sensitivity (i.e., classification) of the

C-98

APPENDIX C
Mapping of Ada Usage to TCB Criteria

data in the object. Sensitivity "abels are used by the TCZ as the basis for
mandatory access control decisions. They are associated with each ADP system
resource (e.g., subject, storage object) that is directly or indirectly
accessible by subjects external to the TCB, and they must be maintained by the
TCB. To import non-labeled data, the TCB must request and receive fram an
authorized user the security level of the data, and all such actions must be
auditable by the TCB. Also, the TCB must enforce subject sensitivity labels and
device labels.

Guidelines for the use of Ada Qxntni= and Features:

Treat sensitivity labels as objects that are represented by abstract data
types. These should consist of Ada's strong data typing encapsulated in
packages. The exportation of labeled information typically involves input
and output using secure protocols, wh-ich should also be represented by
abstract data types. Use tasking and shared variables as required to manage
subject sensitivity labels and their exportation when concurrent processes
are warranted for efficient multiuser and mltisubject TCB system operation.
The recmrended constructs and their discussion in Section 2.0 are as
follows:

INPUT and wrPr 2 - 14.
PACKAGES 2 - 7.
TASKS 2 - 9.
TYPES 2-3.

Example: This example illustrates sensitivity label type declaration.

with BasicTCB Types Package;
package MandatoryAccs_ControlTypesPackage is

subtype Name-of ResourceType is
Basic_TCBTypesPackage. NameStringType;

subtype Sensitivity_LabelType is
BasicTCBTypesPackage. Name-String Type;

Scrubbed Sensitivity. abel : Sensitivity LabelType
:= Basic TCB TypesPackage. BlankName_String;

subtype ExceptionName Type is
BasicTCB_TypesPackage. Name String Type;

C-99

APPENDIX C
Mapping of Ada Usage to TCB Criteria

ScrubbedExIception, Name :Exception Nanie Type
=Basicq_TCB Types Package. BlankNameString;

OthersString : BasicTCBTypes Package. Namre String Type
:BasicLTCB Types Package. BlankName_tring;*

type MAC Rcrd Type is
ileoxze

Name *Name ofResource Type
B iasic_'ICBTpes-Packge. BlankNare,,tring; -see 2 -3.*2.*1

Sens itivity_4abel :Sensitivity__Label,_Type
:ScrubbedSensitivity Label;

end record;

end Manatory_ AccssControl_ Types Package;

with BasicTCB Types Package;
with Manatory AccessControl, Types Package;
package Manatory AccessControlManager Package is

function Sensitivity _LabelsMatch
Sensitivity LabelA :in

MaiatoryAccess_-Control Types-Package.
Sensitivity Label Typw

Sensitivity_ LabelB :in
Mandatorxyccess control Types _Package.

SensitivityLabel_.Type)

return B0OIMA;

end F2.ndatory_A4ccessControlMaznager .Package;

C-100

APPENDIX C
Mapping of Ada Usage to TICB Criteria

3.1.4 Mandatory Access Ountrol

A mandatory access control is a means of restricting access to objects based on
the sensitivity (as represented by a label) of the information contained in the
objects and the formal authorization (i.e., clearance) of subjects to access
information of such sensitivity. It prevents "sane types of Trojan horse attacks
by imposing access restrictions that cannot be bypassed, even indirectly. Under
mandatory controls, the system assigns both subjects and objects special
attributes that cannot be changed on raquest as can discretionary access control
attributes such as access control lists. The system decides whether a subject
can access an object by cmiparing their security attributes" [Gasser 1988,
p.61]. Thus, a TCB must enforce a mandatory acces control policy over all
resources (i.e., subjects, storage objects and I/O devices) that are directly or
indirectly accessible by subjects external to the TCB. All subjects and storage
objects must be assigned sensitivity labels that are a cumbination of
hierarchical classification levels and non-hierarchical categories, and the
labels mst be the basis of the mandatory access control decisions. Also, a TCB
must be able to support two or more security levels.

uixllines for the use of Ada Otrucs and Featres:

The management of a mandatory access control policy is perfo.med typically
with an implementation of the Bell and LaPadula security model that
regulates the security of the accessing of objects by subjects and the
assignment of sensitivity labels to enforce the policy. This requires
classifications of the objects which are to be protected by this policy.
Manage dynamic storage as well as static storage in a secure manner. Also,
objects should be represented by abstract data types, which are implemented
with Ada's packages and user-defined data types. Similarly, the policy
itself should be represented by a package. Use tasking and shared variables
as required to manage mandatory access controls when concurrent processes
are warranted for efficient multiuser and ultisubject TCB system operation.
The recinended constructs and their discussion in Section 2.0 are as
follows:

ACCESS TYPES 2 - 3.8
ARRAYS 2 - 3.6
PACKGES 2 - 7.
TASKS 2 - 9.
TYPES 2-3.

3.2 Accuntability

Accountability is the monitoring of access to and operation of a TCB system by
using identification and authentication of users requesting access to the system,
maintenance of trusted cammication paths, and auditing of accesses to the TCB.

C-101

APPENDIX C
Mapping of Ada Usage to TCB Criteria

3.2.1 Identification and Authentication

Identification consists of using unique identifiers that are associated with each
user (such as a last name, initials, or account number) that everyone knows, that
nobody can forge or change, and that all access requests can be checked against.
The identifier is the means by which the system distinguishes users. In
particular, a TCB mst require users to identify thenselves to it before
beginning to perform any other, actions that the TCB is expected to mediate.

Authentication consists of associating a real user (or more accurately, a program
running on behalf of a user) with a unique identifier, namely, the user ID. "The
system must separate authentication information (passwords) from identification
information (unique IDs) to the maximum extent possible, because passwords are
secret and user IDs are public" [Gasser 1988, p.23]. A TICB must maintain
authentication data that includes information for verifying the identity of
individual users as well as information for determining the clearance and
authorizations of individual users. It uses this data to authenticate the user's
identity and to determine the security level and authorizations of subjects that
are created to act on the behalf of the individual user. The TCB mist protect
authentication data so that it cannot be acoessed by an unauthorized user. It
mist be able to enforce individual acontability by providing the capability to
uniquely identify each individual ADP system user. Also, it must provide the
capability of associating the individual identity with all auditable actions
taken by that individual.

Guidelines for the use of Ada Crwtr ts and Features:

Manage identification and authentication data using corresponding abstract
data types, which consist of Ada's strong data typing encapsulated in
packages. This management should also include using dynamic storage as well
as static storage in a secure manner. Similarly, the identification and
authentication processes should be represented by packages. Use tasking and
shared variables as required to manage security data when concurrent
processes are warranted for efficient multiuser and multisubject TCB system
operation. The recommended constructs and their discussion in Section 2.0
are as follows:

ACESS TYPES 2 - 3.8
ARRAYS 2 - 3.6
PACKAGES 2 - 7.
TASIS 2 - 9.
TYPES 2-3.

C-102

APPENDIX C
Mapping of Ada Usage to TCB Criteria

ExamPle: tLis example illustrates a generic package body for multiple
instances of user identification and authentication. (The
package specification is in Section 3 - 3.1.1.)

with Access Control ListTypes Package;
with Audit Trail Manager_Package; - see 3 - 3.2.3
pw~body Generic_User_Identification and_Authentication_Package is

proc r -:1 -Ceck Password
(Password : in PasswordType;

local MAC Record : in
Mandatory AccessControl_ TypesPackage. see 3 - 3.1.3

MACRecord _Type;

Password is Valid : out BO0LEAN) is

begin - ec Password

ed CheckPassword;

end GenericUserIdentificationandAuthenticationPackage;

3.2.2 Trusted Path

A trusted path is a mechanism by which a person at a terminal can ccmmunicate
directly with the TCB. This mechanism can orly be activated by the person or the
TCB and cannot be imitated by unevaluated software. A TCB must support a trusted
communication path between itself and users for use when a positive TCB-to-user
connection is required (e.g., login, change subject security level).
Comunication via this trusted path must be activated either by a user or the TCB
and must be logically isolated and unmistakably distinguishable from other paths.
The Trusted Path for a Class B3 TOB needs to allow bi-directional access, from
user to TOB and from TCB to user.

C-103

APPEDIX C
Mapping of Ada Usage to TCB Criteria

Guidelines for the use of Ada Constructs and Features:

Trusted paths require secure input and output commnication paths between
the user and subject and the TCB. Trusted paths should be treated as
objects, which can be represented by abstract data types. These should
consist of Ada's strong data typing encapsulated in packages. Use tasking
and shared variables as required to manage trusted paths when concurrent
processes are urr-anted for efficient multiuser and imutisubect TCB system
operation. The rexxneded constructs and their discussion in Section .0
are as follows:

flP~r and CXJPUr 2 - 14
PA90GES 2 - 7.
VIM 2-9.
TPES 2-3.

3.2.3 Audit

An audit of accesses to and operation of TCB operation is maintained in a set of
records (i.e., an audit trail) that collectively provide documentary evidence of
processing used to aid in tracing fron original transactions forward to related
records and reports, and/or backwards from records and reports to their conponent
source transactions. The TCB must be able to create, maintain, and protect from
modification or unauthorized access or destruction an audit trail of accesses to
the objects it protects. Audit data must be protected by the TCB so that read
access to it is limited to those who are authorized for audit data. A TCB must
be able to record use of identification and authentication mechanisms,
introduction of objects into a user's address space, deletion of objects, actions
taken by computer operators and system administrators and/or system security
officers, and other security relevant events. A TCB must be able to audit any
override of human-readable output markings. For each recorded event, the audit
record must identify date and time of event, user, type of event, and success or
failure of the event. For identification and authentication events, the audit
record must include origin of request (terminal ID). For events that introduce
an object into a user's address space and for object deletion events, the audit
record must include the name of the object and the object's security level. The
ADP system administrator must be able to selectively audit the actions of any one
or more users based on individual identity and/or object security level. A TCB
must be able to audit the identified events that may be used in the exploitation
of covert storage channels. A TCB must contain a mechanism that is able to
wmonltorv 4-he n-w~rr Ar"T-.mi;%tiJn of +-hri~rudi- evnt * n~AN

indicate an imminent violation of security policy; this mechanism must be able to
immediately notify the security administrator when thresholds are exceeded. If
the occurrence or accumulation of these security relevant events continues, the
system must take the least disruptive action to terminate the event.

C-104

APPENDIX C
Mapping of Ada Usage to TCB Criteria

Guidelines for the use of Ada Consrcts and Features:

Managing audit data requires maintailing an audit trail. An audit trail is
typically recorded on disk and/or tape, which requires secure irput and
output comunication paths within a 7M that includes a secure disk and/or
tape. The audit data and audit trail should be treated as objects, which
can be represented by abstract data types. These should consist of Ada's
strong data typing encapsulated in packages. In addition to being stored on
disk or tape, the audit data should be (at least partially) located in
dynamic storage or static storage. Use tasking and shared variables as
required to manage the audit data and audit t-ail when conurent processes
are warranted for efficient imaltiuser and multisubject TM system operation.
The re---ended constructs and their discussion in Section 2.0 are as
follows:

ACCESS TYPES 2 - 3.8
ARRAYS 2 - 3.6
INPTT and OTPUT 2 - 14
PACKAGES 2 - 7.
TASKS 2 - 9.
TYPES 2-3.

Example: Audit trail manager package

with TET 10;
with MadatoryAccessControl Types Package; -- see 3 - 3.1.3
package AuditTrailManager Package is

AuditTrailText_File : TEXTIO. FILETYPE;

procedure LogSubjectsAccess to Object in AuditTrail (
Subject MACRecord : 1

Mandatory Access_Control fTypes Package. - see 3 - 3.1.3
MACRecordfype;

Named ObjectMACRecord : in
Mandatory Access_ControlTypesPackage. - see 3 - 3.1.3

C-105

k.DPEDIX C
Mapping of Ada Usage to TCB Criteria

prtxxxire LogException inAuditTrail
ExceptionName : in

MandatoryAccess_Control TypesPackage. - see 3 - 3.1.3
ExceptionName Type;

ExoeptionRaiser Record : in
Mandatory c _ ? nControl. Types ackaW-. - see 3 - 3.1.3

MACRecordLType;

Exception_Harxler Record : inMadatoryAcces-_ControlTypesPackage. - see 3 - 3.1.3

MACRecord Type)

end AuditTrailManager_Package;

with Mandatory AccessControl ManagerPackage;
packge body AuditTrail ManagerPackage is

procedure Log Subjects AccesstoObject inAuditTrail C
SubjectMACRecord : in

Mandatory AccessControl Types Package. - see 3 - 3.1.3
MACRecordType;

NamedObject MACRecord : in
MandatoryAccess_Control TypesPackage. - see 3 - 3.1.3

MCRecord_Type) is

begin - LogSubjects Access to Objec in AuditTrail

TEXT_IO. PUT_LINE (Audit Trail Text File,
"Subject " & SubjectMACRecord. Name);

TEXT 10. fUT LINE (Audit Trail Text File,
" is not authorlized to access " &
Named ObjectMACRecord. Name)

end LogSubjects Access to Object in AuditTrail;

C-106

APPENDIX C
Mapping of Ada Usage to TCB Criteria

pmr__re Iog Exeptionin Audxit Trail
ExceptionName : in

MandatoryAooess_Control Types Package. see 3 - 3.1.3
ExtioNam~e ;

ExceptionRaiser Record : in
MandatoryAcoess_Control TypesPackage. see 3 - 3.1.3

MAC_Recordq_'IT";

Exception Hadler Record : in
Madatory _ o Types Package. see 3 - 3.1.3

MACRecordType)is

begin - LogException in AuditTrail

if Mandatory AccessControlManager Package.
Sensitivity labelsMatch - see 3 - 3.1.3

Exception Handler Record.
Sensitivity _abel,

Exception Raiser Record.
Sensitivity Label) then

TEXT I. P~r LINE (Audit Trail TextFile,
"Subprogram " &
Exception Handler Record. Name &
" handled the exception, ");

TEXTIO. PUT_LINE (AuditTrail Text File, " ", &
ExceptionName & " raised by " &
ExceptionRaiserRecord. Name);

else

TEXT_IO. PUT_LINE (Audit Trail Text-File,

Exception HandlerRecord. Name &
" is not authorized to handle the exception, "

C-107

APPENDIX C
Mapping of Ada Usage to TCB Criteria

TDTIO. PJrLINE (Audit TrailTextFile, " " &
Exception_Name & " raised by " &
ExceptionRaiserRecord. Name);erid if;

end Ig Exception in AuditTrail;

begin - AuditTrailManagexPackage initialization

Mandatory_Access_ontrol_Types Package. see 3 - 3.1.3
OthersString(1 .. 6) := "others";

xi Audit_TrailManagerPackage;

3.3 Assurance

Assurance of the correctness of a TCB system's security controls, as specified
by the security requirements, determine the extent that the security architecture
must dictate many details of the development process. The two types of assurance
that must be considered are operational and life-cycle.

3.3.1 Operational Assuranc

Operational assurance includes the following aspects: system architecture, system
integrity, covert channel analysis, trusted facility management, and trusted
recovery.

3.3.1.1 System Architecture

The TCB must maintain a domain for its own execution that protects it from
external interference or tampering. It must maintain process isolation through
the provision of distinct ov.ress spaces under its control. The TCB must be
internally structured into well-defined largely independent modules. It must
make effective use of available hardware to separate those elements that are
protection-critical from those that are not. TCB modules must be designed such
that the principle of least privilege is enforced. Features in hardware, such as
segmentation, =mst be used to support logically distinct storage objects with
separate attributes (namely, readable and writable). The TCB user interface must
be completely defined and all elements of the WB must be identified. The TCB
must be designed and structured to use a complete, conceptually simple protection

C-108

APPENDIX C
Mapping of Ada Usage to TCB Criteria

mechanism with precisely defined semantics; this mechanism mist play a central
role in enforcing the internal structuring of the TCB and the system. The TCB
must incorporate significant use of layering, data abstraction, and information
hiding. Significant system engineering must be directed toward minimizing the
complexity of the TCB and excluding from the 7M modules that are not protection-
critical.

Guidelines for the use of Ada ubnts and Features:

The TCB's system architecture must be modular, and use data &bstraction with
information hiding in its implementation. Ada is -well suited to incorporate
modularity with its packages and subprograms and to implement data
abstraction and information hiding with abstract data types and packages.
To ensure system integrity and to prevent the creation of covert channels,
the creation of TCB system features (dynamic storage, input and output
comunications within the TCB and between the user/subject and the TCB,
tasking and/or global and shared variables) must address the potential
security problems associated with their implementation and use. The
reciended constructs and their discussion in Section 2.0 are as follows:

ACCESS TYPES 2 - 3.8
INIT and OUTPX] 2 - 14.
PACKAGES 2 - 7.
TYPES 2-3.

3.3.1.2 Systm Interity

Hardware and/or software features must be provided that can be used to
periodically validate the correct operation of the on-site hardware and firmware
elements of the TCB.

Guidelines for the use of Ada Constructs and Features:

Take advantage of Ada to create readable code that helps the validation
process. See the discussion of identifiers in Section 2 - 2.3.

3.3.1.3 Overt Channel Analysis

The search for covert channels required in this analysis is facilitated by having
4-4w. M-Plim c:^f4-i~n= ;A ii-c Ary-n-mnt-i 09 be rabl nd iir1t be.

C-109

APPENDIX C
Mapping of Ada Usage to TCB Criter a

Guidelires for the use of Ada Constrts and Features:

Take advantage of Ada to create readable code which helps the
identification of covert channels. Refer to the discussion of identifiers
in Section 2 - 2.3.

3.3.1.4 Trusted Facility Management

The majority of issues related to trusted facility management are not software
issues. Rather, they are concerned with the responsibilities of the sec-rity
administrator and the ADP system administrative personnel.

Guidelines for the use of Ada Cmntruxts and Features:

Take advantage of Ada to create readable code which helps the management of
a trusted facility. Refer to the discussion of identifiers in Section 2-
2.3.

3.3.1.5 Trusted Recovery

Procedures and/or mechanisms must be provided to assure that after an ADP system
failure or other discontinuity, recovery without a protection compromise is
obtained.

Guidelines for the use of Ada onstructs and Features:

Implement trusted recovery with Ada's exception handling mechanism, taking
into account proper security considerations. Refer to the discussion of
exception handling in Section 2 - 11. System reinitialization and backup
should be handled with trusted recovery techniques. This requires the input
and oatput operations involved in system reinitialization and backup to be
trusted. Refer to the discussion of input and output in Section 2 - 14.

3.3.2 Life-Cycle Assurance

Life-Cycle assurance includes the following aspects: security testing, design
specification and verification, and configuration management.

3.3.2.1 Security Testing

Security mechanisms of the ADP system must be tested and found to work as claimed
in the system documentation. A team of individuals who thoroughly understand -e
specific implementation of the TCB must siibject its design documentation, source

C-l10

APPEDIX C
Mapping of Ada Usage to TCB Criteria

code, and object code to thorough analysis and testing. The team's objectIvE
should be to uncover all design and implementation flaws that would permit a
subject external to the TCB to read, change, or delete data normally denied under
the mandatory or discretionary security policy. This will assure that no subject
is able to cause the TCB to enter a state such that it is unable to respond to
cammmications initiated by other users. The TCB mist be found resistant to
penetration. All discovered flaws mist be corrected, and the TCB must be
retested to demonstrate that the flaws have been elimnated and that new flaws
have not been introduced. Testing must demonstrate that the TCB inplementation
is consistent with the descriptive top-level specification. No design flaws and
no nore than a few correctable implementation flaws may be found during testing
and there must be reasonable confidence that few remain.

Guidelines for the use of Ada Constructs and Features:

Security testing of the TCB system is promoted by having the system
architecture exhibit modularity, and using data abstraction with information
hiding in its implementation. Ada is well suited to incorporate modularity
with its packages and subprograms and to implement data abstraction and
information hiding with abstract data types. Security testing of the TCB
system must include the testing of all implementations of the following
system features: dynamic storage management, input and output comznications
within the TCB and between the user/subject and the TCB, tasking and/or
global and shared variables. The recommended constructs and their
discussion in Section 2.0 are as follows:

INPLT and OU= 2 - 14.
PACKAGES 2 - 7
SUBPROGRAMS 2 - 6.
TYPES 2-3.

3.3.2.2 Design Specificatit, and Verification

A formal model of the security policy supported by the TCB must ne maintained
that is proven to be consistent with its axioms. A descriptive top-level
specification (DTSL) of the TCB must be maintained that completely and accurately
describes the TCB in terms of exceptions, error messages, and effects. It must
be shown to be an accurate description of the T=E interface. A convincing
argument must be given that the DITS is consistent with the model.

3.3.2.3 Configuration Maagemnt

A configuration management system must be in place that maintains control of
changes to the descriptive top-level specification, other design data,
implementation documentation, source code, the running version of the object

C-1ll

AP=Dh'DX C
Mapping of Ada Usage to TCB Criteria

code, and test fixtures and documentation. The configuration management systen.
must assure a consistent mapping among all documentation and code associated with
the current version of the TCB. Tools must be provided for generation of a new
version of the TtB from source code and for cxmparing a newly generated version
with the previous TCB version in order to ascertain that only the intended
changes have been made in the code that will actually be used as the new version
of the TCB.

3.4 .Dnum tatio

Documentation is an inportant part of the software development process. It aids
users who are not familiar with the system in learning how to use the system
correctly. It aids support programmers in testing the system to ensure that a
modification has not had a negative impact on the system. This is especially
important when develcping a TCB, because the security of the system is of the
utmost importance. The documentation must be developed to meet all requirements
set forth in the TCSEC, and must be complete and up to date.

Guidelix for the use of Ada ConstnKts and Features:

The documentation, particularly the design documentation, mist clearly
convey the iplementation of the TCB system architecture, which must exhibit
modularity, and use data abstraction with information hiding in its
iplementation. Ada is well suited to incorporate modularity with its
packages and subprograms and to implement data abstraction and information
hiding with abstract data types. These features not only aid the
understandability of the code, but also of the design documentation. The
documentation must clearly show how the security risks are handled,
including those posed by the following TCB system features: dynmnic storage
management, input and output ccm.m ications within the TCB and between the
user/subject and the TCB, tasking and/or global and shared variables, and
any tailoring or configuring of the Ada coirpiler or runtime system. This
discussion of the application of Ada constructs to documentation applies to
the following four subsections: Security Features User's Guide, Trusted
Facility Manual, Test Documentation, and Design Documentation.

Ada coding conventions should use Ada's self-documenting capabilities, so
that the code can contribute to the design and testing documentation. The
self-documenting capabilities can be realized better with the use of the
following conventions: Readable and tuderstandable mnemonics should be used.

to logically partition the code. Canrents should be inserted into the code
to provide information that is not conveyed by the code. Each package and
subprogram should have a header that states its purpose, its authors, and
the history (dates) of its creation and revision(s).

C-112

APPENDIX C
Mapping of Ada Usage to TCB Criteria

3.4.1 Security Features User's Guide

A single summaly, chapter, or manual in user documentation must describe the
protection mechanism provided by the TCB, guidelines on their use, and how they
interact with one another.

Guideline for the use of Ada Cmztxms and Features:

Ada will have no inpact on the development of the Security Features User's
Guide.

3.4.2 Trusted Facility Maral

A manual addressed to the ADP system administrator must present cautions about
functions and privileges that should be controlled when running a secure
facility. It must describe the operator and administrator functions related to
security, to include changing the security characteristics of a user. The manual
must provide guidelines on the consistent and effective use of the protection
features of the system, how they interact, how to securely generate a new TCB,
and facility procedures, warnings, and privileges that need to be controlled in
order to operate the facility in a secure manner. TCB modules that contain the
reference validation mechanism must be identified. Procedures for secure
generation of a new TCB from source after modification of any modules in the TCB
must be described. The mamal must include the procedures to ensure that the
system is initially started in a secure marner. Procedures must also be included
to resume secure system operation after any lapse in system operation.

Guidelines for the use of Ada Constructs and Features:

Ada will have no impact on the development of the Trusted Facility Manual.

3.4.3 Test Documentation

The system devcloper must provide to the evaluators a document that describes the
test plan, test procedures that show how the security mechanisms were tested, and
results of the security mechanisms' functional testing. Documentation must
include results of testing the effectiveness of the methods used to reduce covert
channel bandwidths.

Guidelines for the use of Ada Constructs and Features:

Ada coding should be self-documenting, as discussed in Section 3 - 3.4, so
that it can contribute to the testing documentation.

C-113

APPENDIX C
Papping of Ada Usage tc TCB Cr'.teria

3.4.4 Design Documentation

Documentation must be available that provides a description of the manufacturer's
philosophy of protection and an explanation of how this philosophy is translated
into the TCB. The interfaces between the TCB modules must be described. A
formal description of the security policy model enforced by the TCB mist be
available and proven that is sufficient to enforce the security policy. Specific
TCB protection mechanisms must be identified, and an explanation must be given to
show that they satisfy the model. The TCB iplementation (i.e., in hardware,
firmware, and software) must be shown, using informal techniques, to be
consistent with the VMrS. he elements of the DILS must be shown, using informal
techniques, to correspond to the elements of the TCB. Documentation must
describe how the TCB implements the reference monitor concept and give an
explanation why it is tamper resistant, cannot be bypassed, and is correctly
implemented. Documentation must describe how the TCB is structured to facilitate
testing and to enforce least privilege. Documentation must also present the
results of covert channel analysis and the tradeoffs involved in restricting the
channels. All auditable events that may be used in the exploitation of knaown
covert storage channels must be identified. The bandwidths of known covert
storage channels, the use of which is not detectable by the auditing mechanisms.,
must be provided.

Guidelines for the use of Ada Cnstnrts and Features:

Ada code should be self-documenting, as discussed in Sectioi 3.4, so that it
can contribute to the design documentation. The use of Ada PDL will assist
in gaeerating readable and understandable design documentation.

C-114

APPENDIX C
Summary and Conclusions

4.0 SLHWY AND CONCLUSIONS

4.1 SUMMARY

This appendix is a set of guidelines on how to use Ada in the development of
TCBs. These include guidance on how to exploit the advantages of using Ada, such
as data abstraction, information hiding, modularity, localization, strong data
typing, packages, subprograms, and tasks. They also provide guidance on how to
avoid problem with using Ada, which are associated with certain Ada constructs
and' features.

Sections 2.0 and 3.0 address the guidelines in two ways. First, Section 2.0
provides definitions of and general programming guidelines on the use of Ada
con structs and features mapped directly to the M/4. Section 3.0 provides
guidelines on the application of Ada constructs and features in the context of a
mapping of Ada usage to generalized TCB criteria. In particular, Class B3 is
used as a template for the generalized TCB criteria.

Those guidelines specific to both TCB development and Ada are presented here. A
developer should be experienced with the TCB developTent process and have
established guidelines for the development of TCBs. Also, a developer should use
general-purpose Ada guidelines. The guidelines presented here are meant to
cmplement both TCB development guidelines and general-purpose Ada guidelines.

4.2 CONCLUSIONS

Because Ada was designed with features and constructs that promote recognized
sound software engineering principles, it is well suited as the implementation
language of TCBs. Ada offers various specific benefits for the development of
TCBs, such as the capability of creating TCB systems that exhibit modularity and
information hiding with the use of packages. These guidelines are meant to
enable developers to realize these benefits. Also, certain Ada constructs
provide both advantages and disadvantages. In tnese cases the guidelines are
meant to enable developers to realize the advantages of a construct while
minimizing or eliminating its disadvantages.

C-115

APPENDIX C
Collection of Examples

5.0 CJD OICN OF MPLES

The following exeaples have been collected from Sections 2.0 and 3.0 to
provide a single area for referencing them. The section naming conventions
"2 -" and "3 -" have been retained for consistency and ease of reference to
the preceding sections.

2 2. excal Elements

Examples: This exanple illustrates underscoring in numeric literals, which
improves the readability of literals that have many digits.
Underscores are used in place of cimas in large numbers. In
strings of digits to the right of the decimal, an underscore is
used, for example, after every fifth digit.

123_456 rather than 123456 - integer literal
3.14159_26 rather than 3.1415926 - real literal

2 - 2.4.2 Based Literals

Examples: This example illustrates base literals.

- integer literals of value 255
2#1111_1111# 16#FF# 016#10FF#

2 - 2.3 Identifiers

Exaples: The following examples illustrate clearly readable and
understandable mnemonic identifier names. They are identifiers
which are used in later examples in this appendix. The use of
each identifier should be clear based on its name. This set of
identifiers is taken out of context; thus they do not constitute
ccmpilable code.

Named Object ACL Record - see 2 - 3.2.1
MaxNamedStringlength - see 2 - 3.2.2
Named Individuals_ListType - see 2 - 3.2.1
ScrubbedNamed_Objectsiist - see 2 - 3.2.1

C-116

APPDNDIX C
Collection of Examples

2 - 3.2.1 Object Declarations

Exaxples: The followig examples illustrate clearly readable and
understandable mnemonic cbject declarations. This set of cbject
declarations include the initialization of the objects.

-- MaxNamedString length, Name Strin Type, and BlankName String
-- are declared in package Basic TCB TypesPackage. Because only essential
-- features of this package need to be shown, it is not included formally in

- this a ix.

BlankNameString : NameString-Type - see 2 - 3.6.3
:= (1 .. MaxNamedString_Iength => ' - see 2 - 3.2.2

-- The next three declarations in this section are located in the array
- types version of package AccessControl List TypesPackage. Because only
-- essential features of this package need to be shown, it is not included

-- formally in this appendix.

ScrubedNamed Objects List
Named ObjectsList Type see 2 -3.6

=Named Obj ects -List,_Type'
otbers => Basic TCB Types Package.

BnkNae_String);

Scrubbed Named Individuals List :
NamedIndividuals-List Type see 2 - 3.6

. Named -Individuals List Type'
(oers => Basic TCB Types Package.

Blank_Name_String);

ScrubbedGroups of Named Individuals List
Groups of Named_-ndividualsList Type see 2 - 3.6
Groups_ of NadIndividualsListType'

others => Basic TCB Types Package.
Blank_NameString);

- The next three declarations in this section are located in the access
- types version of package AccessControlListTypesPackage. Because only
-- essential features of this package need to be shown, it is not included
-- formally in this appendix.

C-117

APPENDIX C
Colle:tion of E>:aMles

Scrubbed-NamerkObjectsList
Nameq ObjectsList TIype -see 2 - 3.8

= Named Objects List Type'
(Name => Basic TCB Types Package.

Blank_NameString,
Next => null);

Scrubbed Named Individuals List
NamedI ividuals List Type see 2 - 3.8

= Named Individuals Lis- Type'
(Name => Basic TCB Types Package.

Bnk_Name_String,
Next => rnll);

Scrubbed Groups of Named Individuals List
Grupf Named IndividualsLs Ts 2 - 3.8

= Groups of NamedIndividualsList Type'
(Name => Ba-ic TCB Types Package.

BlankName_tring,
Next => null);

-- The remaining declarations in this section are located
-- in both the access and array types versions of

- package Access_Control List Types Package. Because only essential
- features of this package need to be shown, it is not included formally in
-- this appendix.

Scrubbed Named Object ACL Record
NamedObjectRecord Type - see 2 - 3.7

= NamedObject Record Type'
Name => Basic_TCB_TypesPackage.

BlankName-String,

Sensitivity Label =>
MandatoryAccessControl TypesPackage.

ScrubbedSensitivity label, - see 3 - 3.1.3

Authorized Named IndividualsList =>
ScrubbedNamedIndividualsList,

Authorized Groups of Named Individuals List =>
Scrubbed Groups of Named IndividualsList,

Unauthorized NamedIndividuals List =>
Scrubbed NamedIndividualsList)

C-118

APPENDIX C
Colle-'Ction of Exanples

Named Object ACLRecord : Named ObjectRecordType - see 2 - 3.7
:= ScrubbedNamedLObj ect ACLRecord;

ScrubbedNamed IndividualACL Record:
Named IndividualRecordLType - see 2 - 3.7

=NamedIrxiividualRecord Type'
(Nanne => Basic TCB TypeP~ackage.

Bla*nNmeSting,
- see 2 - 3.6.3

SensitivityLabe =>
MandatozyAccessControl_.TypesPackage.
ScrubbedSensitivity ;abel, -see 3 -3.*1.3

Named ObjectsList => ScrubbedNamed Objects-List)

Named IndividualACLRecord :
Named Individual Record Type - see 2 -3.7

:= crubedNaimedIndividualAOLRecord;

Scrubbed Group of Named-Individuals ACLRecord
Group of Named Individuals RecordType - see 2 -3.7

=r Gopf ofna IndividualsRecord Type'I
Name => Basic TCB TypesPackage.

BlankameQWString,

SensitivityLabel => - e ..

Mandatory_AhccessControlTypes -Package.
ScrubbedSensitivity LabelI - see 3 -3.1.3

Named ObjectsList => ScrubbedNamed Objects _List)

Group ofNaed IndividualsAOLRecord :
Group of NamedIndividuals Record Type -see 2 -3.7

Scrubedjroup _ofNamed-IndividualsACLRecord;

C-119

APPENDZX C
Collection of Examles

2 - 3.2.2 Number Declaraticns

Exanple: The following example illustrates a clearly readable and
understandable mnemnic number declaration

- Max NamedStringIenth is declared in package BasicTCBTypesPackage.
- Because only essential features of this package need to be shwn, it is
- not included formally in this appendix.

MaxNaydStringlegth : oa tant := 80;

2 - 3.3.1 Type c atic

Example: The following example illustrates a clearly readable aid
understandable mnemonic type declaration.

-- Day Type is declared in package BasicLTypesPackage. Because only
-- essential features of this package need to be shown, it is not included
-- formally in this appendix.

type Day Type is (Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday);

2 - 3.3.2 Subtype Declaraticrns

Exiple: The following example illustrates a clearly readable and
understandable mnemonic subtype declaration.

-- WeekdayType is declared in package BasicTypes_Package. Because only
-- essential features of this package need to be shown, it is not included
-- formally in this appendix.

subtype Weekday Type is Day Type range Monday .. Friday;

2 - 3.4 Derived Types

Example: The following example illustrates a clearly readable and
understandable mnemonic derived type declaration. The
package Key ManagerPackage is declared in section 2 - 7.4.2.

C-120

APPE2DIX C
Collez-ion of Eamyples

type Access KeyType is new KeyManagerPackage. KeyType;
- the derived subprograms have the following specifications:

- prooedure GetKey (K : out AoessKey Type);
- function "<" (X, Y : AccessKey Type) ret BOOIEAN;
- ftwtic ,,+11 (X, Y : AessLKeyType) return AcssKey Type;

2 - 3.5.1 Emraticn Types

Example: The following example illustrates a clearly readable and
understandable mnemonic enumeration type declaration.

-- SecurityClassificationType is declared in
- package Basic TCB TypesPackage. Because only essential

-- features of this pac e need to be shown, it is not included
-- fonnally in this appendix.

type Security_Classification_Type is
(Unclassified, Confidential, Secret, TopSecret);

2 - 3.6 Array Types

Exauples: The following examples illustrate clearly readable and
understandable mneuonic array type declarations.

- The following declarations in this section are located in the array
- types version of package AccessControlList TypesPackage. Because only
- essential features of this package need to be shown, it is not included
- formally in this appendix.

Max Number of Objects : constant NATURAL = 25;
Max Nurber of Individuals : constant NATJRAL := 25;
Max_ N ber of Groups-of Individuals : constant NATJRAL = 25;

type NamedObjectsList Type is array
POSITIVE range 1 .. MaxNumberof Objects) of
Basic_TCE TypesPackage. Name of bj ect Type; - see 2 - 4.1

type Named Objects ACL Type is array
OSITI-VE arge 1 .. MaxNmber_of Objects) of

Named Object Record Type; - see 2 - 3.2.1

C-121

APPEDIX C
Collection of :a.aples

type Named_ Idividuals ListType is array
P(S1TIVE range 1 .. Max-Number ofIndividuals) of
BasicTCBTypes _Pckage.

Nameof_IndividualType; - see 2 - 4.1

type Named Individuals AC Iype is array
(POSITIVE range 1 .. MaxNumber_ ofIndividuals)of

Named_Individual_RecordType; - see 2 - 3.2.1

type Groups of_NamedIndividualsListType is array
POSITIVE range 1 .. Max Number of GroupsofIndividuals) of
Basic_TCB Types_Package.

Name of Group_ofIndividualsType; - see 2 - 4.1

type Groups of_NamedIndividualsACL_Type is array
POSITIVE range 1 .. Max_Numberof Groups-of Individuals) of
Group of_Named IndividualsRecordType; - see 2 - 3.2.1

2 - 3.6.3 7 Type String

Example: The following exanple illustrates a clearly readable and
understandable mnemonic string type declaration.

-- NameStringType is declared in package Basic_ CB Types-Package.
-- Because only essential features of this package reed to be shown,

-- it is not included formally in this appendix.

ubtype NameString Type is
SIRING (1 .. MaxNamed Stringength ; - see 2 - 3.2.2

2 - 3.7 Record Types

Examples: The following examples illustrate clearly readable and
understandable mnemonic record type declarations.

- The following declarations in this section are located in both the access
-- and array types versions of package AccessControl ListTypesPackage.

- Because only essential features of this package need to be shown, it is
-- not included formally in this appendix.

C-122

APPEDIX C
Collection of Examples

type Named_Object_ RecordType is

Name : Basic _TC TypesPackage. Name_of_ObjectTyp -- see 2 - 4.1
:= Basic_TCBTypesPackage. BlankName_String; - see 2 - 3,2.1

Sensitivity label:
Manatory ?esscontrolTypes..ackage.

Sensitivity labelType
Mandatory_Access_CorjtzrlTypes Package.

Scrubbed _ansitivity label; - see 3 - 3.1.3

AuthorizedNamed Individuals List :
NardInrividuals-_ListType - see 2 - 3.6 and 2 - 3.8

ScrubbedNamed Individuals_List; - see 2 - 3.2.1

Authorized GM406ps_of_Named Individuals_List :
- see 2 - 3.6 and 2 - 3.8

Groups of_Named Individuals ListType
:= ScrubbedGroupsof Named_IndividualsList; - see 2 - 3.2.1

Unauthorized Named Individuals List :
Named-Individuals_-ListType -- see 2 - 3.6 and 2 - 3.8

:= Scrubbed NamedIndividualsList; see 2 - 3.2.1
end record;

type NamedIndividualRecordType is
record

Name : Basic TCB Types Package.
Name_ofIndividual Type - see 2 - 4.1

:= Basic TCBTypes Package. BlankName_String; -- see 2 - 3.2.1

SensitivityLabel
MandatoryAccess_Control TypesPackage.

Sensitivity label Type
:= Mandatory_Acess_Control_Types Package.

ScrubedSensitivity label; - see 3 - 3.1.3

Named Objec sList :
Naed_Objects_List Type - see 2 - 3.6 and 2 - 3.8
:= S m/bbed NamedObjects_List; - see 2 - 3.2.1

end record;

C-123

APPENDIX C
Collection of Eanmples

type Group ofNamedIndividualsRecordType is
record

Name : Basic TCB TypesPackage.
Name_ofGrWEpofIndividualsType - see 2 - 4.1

= Basic_TCB_TypesPackage. Blank_Name_String; - see 2 - 3.2.1

Sensitivitylabel:
Mandatory Acoess _Control Types ackage.

Sensitivity label Type
:= Mandatory_Access_ControlTypesPackage.

ScrubbedSensitivity_Label; - see 3 - 3.1.3

Named ObjectsList :
Named_Objects List Type - see 2 - 3.6 and 2 - 3.8

:= ScrubbedNamed Objects_List; - see 2 - 3.2.1
end record;

2 -3.8 Acces Types

Examples: The following examples illustrate clearly readable and
understandable mnemonic access type declarations. To ensure that
the memory allocated to a node is scrubbed, the cacponents of a
node's record type should be initialized to scrubbed values, as
shown below. Also, ensure that a node record is set to scrubbed
values before it is placed back in the heap, i.e., befc-_e nothing
points to it any longer.

-- The following declarations in this section are located in the access
- types version of package AccessControlList Types Package. Because only
-- essential features of this package need to be shown, it is not included
-- formally in this appendix.

type NamedObjectsListType;
type Named_Objects List Pointer' Type

is acoess NamedObjectsList Type;

type NamedObjectsList Type is

Name : BasicTCBTypes Package.

BEasic TCB Types_Packace.
BlankName String; - see 2 - 3.2.1

Next : Named Objects ListPointerType : = mll;
end record;

C-124

APPENDIX C

Collectic - of Eaples

type NamedObjects ACLType;
type Named_Objects ACLPointer Type

is access NamedObjectsACLType;

type Named_Objects ACL Type is
reoxrd

Named ObjectACLRecord
Named_Object RecordType
:= ScrubbedNamed ObjectACLRecord; see 2 - 3.2.1

Next : Named ObjectsACLPointer_Type
:= nui;

end record;

type Named IndividualsList Type
type Named-Iri iduals_ListPointerType

is access Named_IndividualsListType;

type Named._Individuals_ListType is
record

Name : BasicTCBTypesPackage.
Name of Individual Type - see 2 - 4.1

:= Basic_TCB_TypesPackage.
BlankNameString; - see 2 - 3.2.1

Next : Named Individuals_ListPointerType null;
end record;

type Named Individuals ACL_Type;
type NamedIndividuals_ACL_PointerType

is access NamedIndividuals ACLType;

type Named_Individuals ACLType is
record

Named Individual ACL Record :
Named Irnividual Record Type

:= Scrubbed Named Individual ACL Record; see 2 - 3.2.1

N-t M AJnm=A Tn l' rii:1c h'rT. ,v ni--, mr-n=
:= null;

end record;

C-125

APPENDIX C
Collection of Examples

ype Group ofNamedIndividualsList_Type

type Groups of Naned-Individuals_ListPointer_Type
is aozvss Groups of Named_Individuals_List_Type;

type Groups of_Named_Individuals_List_Type isreord
Name : BasicTMBTypesPackage.

Name_of_Group of Individuals Type; - see 2 - 4.1
:= Bas ic_TB_TypesPackage.

Blank_NameString; - see 2 - 3.2.1

Next : Groupsof NamedIndividuals-List PointerType
: = ull;

end record;

type Groupsof NamedIndividuals_ACL_Type;
type Groupsof_NamedIndividuals_ACLPointe:_Type

is as Groups of Named_Individuals_ACL_Type;

type GroupsjofNamed_Individuals_ACL_Type is
record

Group of Named Individuals ACL Record:
Group of_Named_Individuals_Record Type
:- Scrubbed Group of Named Individuals ACL_Record;

- see 2 - 3.2.1
Next : Groups of NamedIndividuals_ACL_Pointer Type

: = null;
end record;

2 - 4.1 Names

RE aples: The following examples illustrate clearly readable and
understandable mnemonic names.

- 'he following type declarations in this section are located in
- pakauge Basic TCB Types_Package. Because only essential features of this
- package need to be shown, it is not included fornally in this appendix.

szbtype Name of Object Type is Name_String Type; -- see 2 - 3.2.2

Name of Object : Name of ObjectType
:= Blank Name String; - see 2 - 3.2.1

C-126

APPENTIX C
Collection of Examples

subtype NameofIniividual Type is NameStringTYpe; -- see 2 - 3.2.2

Name of Individual : Nameof_IrKfividualType
:=-BlankNameString; - see 2 - 3.2.1

subtype Name_of Groupof_IndividualsType is NameStringType;
- see 2 - 3.2.2

Name of GramofNa ed-Inividuals :
Name_of_Group of Individuals Type

: = Blank_Name_String; - see 2 - 3.2.1

2 - 6.4.2 Default Paraumeters

Example: This example illustrates named parameter association.

procedure SearchFile (File : in out
Access ControlListTypes_ Package.
ACL_FileType;
Key : in Name;
Index : out File_Index);

Search File (File => ACLFile,
Key => "Smith , ,
Index => RecordEntry);

Example: This example from package TEXT_I0 illustrates default parameters.

procdure CEATE (FILE : in out FILETYPE;
MODE : in FILE_O0DE O:= TFILE;
NAME : in STRfNG = f"-

FORM : in STRING ""

TEXT IO. CREATE (FILE =>
NamedObjects Access ControlListManagerPackage.

ACL_File-);

2 - 7.2 Package Specificaticns and eclaraticns

Example: This example illustrates data abstraction and information hiding,
modularity, and localization achieved with package specification
and declarations.

C-127

APPENDIX C
Collection of Examples

with BasicTCBTypesPackage;
with AccessControlListTypesPackage;
package NamedObjectsAccessControlList ManagerPackage is

procire Get_ Named ObjectACL_Record
(Name of Object : in Basic_TCB Types Package.

Nameof Object Type; - see 2 - 4.1
NameObject ACL Pacord: cut

AccessControlList Types Package.
Namedbject_RecordType); - see 2 - 4.1

proedure Insert_Named_Obj ect ACL Record
(Named Object ACL Record : in

AccessControl ListTypes Package.
NamedObject_Record Type); see 2 - 4.1

procedure Delete NamedObject ACL Record
(Name of Object : in Basic_ TB_TypesPackage.

NameofObjectType); see 2 - 4.1

Overflow AccessControlList : exception;
AccessControlList is Null : exception;

private

end Named ObjectsAccessControlList ManagerPackage;

package body NamedObjects Access_Control_List ManagerPackage is

- By declaring the Named Objects ACL (see 2 - 12.4) in the
- body of this package rather than in the specification,
- it is hidden from the user of this package. Thus, the user
- can gain only indirect access to it through the subprograms
- declared in the specification. he typical list manipulation

- j=LC _ ' k =':$- I CL= J~ L>-%-4~'1 LgU)/Z. QA"L

- Feldman 1985) are only provided in the package body.

C-128

APPEDIX C
Collectior, of Dailes

-- Typical list manipulation operations

procdureGetNamed ObjectACLRecord
(Name of Object : in BasicICB Types Pacae

Name of Object_Typ-; - see 2 - 4.1
Nameq Object ACL Record o ut

Access_-Control_-List TypesPackage.
Named Pbject_ Record Type) is - see 2 - 4.1

begin -GetNanedLObjectACLRecord

Sequence through the NamedObect ACL using the typical
- list manipulation operations to locate and get the
- indicated Nameq_Object ACL Record.

end GetNamed ObjectACLRecord;

procedure InsertNamed_Object ACL- Record
NamedkObject ACL Record : in

AccessControlList Types_)Package.
Named _ObjectRecoRdType) is -- see 2 -4. 1

begin -- InsertNamedObject ACLRecord

- Sequence through the NamedObject AC!L using the typical
- list manipulation operations to locate the appropriate
- place to insert the indicated Nanw~qObject ACL Record.
- This location is determined by a predefinei mechanism,
- e.g., a-phabitizin by the NamedObject ACLRe-cord.Name,

end InsertNamedObject ACLRecord;

C-129

APP DIX C
Co2lection of Examples

procedure Delete Named_Objeat ACL Record
Name of Object : in Basic TCB Types Package.

Nameof_ObjectType) is - see 2 - 4.1

begin - DeleteNamedObject ACLRecord

- Sequence through the NamedObject ACL using the typical
- list manipulation operations to locate, scrub, and delete
- the indicated Named Object ACLRecord.

end DeleteNamedObj ect ACLRecord;

end NamedObjects_ Aess_ControlListManagerPackage;

2 - 7.4.2 CperaticxE of a Private lype

Example: The abstract data type, KeyType, is created with the use of
the package Key ManagerPackage and its private type, Key Type.

package Key ManagerPackage is
type Key Type is private;
lullKey : constant Key Type;
procedure GetKey (K : out Key Type);
functio. 1"< (X, Y : KeyType) return BOOLFiA;
functior '+" (X, Y : Key Type) return KeyType;

private

type Key Type is ne NAURAL;
NullKey : constant Key Type := 0;

end KeyManager_Package;

C-130

APPENDIX c
Cilection of E:aples

package body KeyManagerPackage is

Last y : KeyType := 0;

prix--ur. Get Key (K : cut Key Type) is
begin

last_Key := last;_ey + 1;
K := Last Key;

end GetKey;

function "<" (X, Y : Key Type) return BOOLEAN is
begin

return NARAL (X) <NMRAL (Y);
end "<";

function "+" (X, Y : KeyType) return Key Type is
begin

return Key Type (NMJRAL (X) + NMURAL (Y)
end "+";

end Key Managerackage;

2 - 9.2 Task Types and Tsk Objects

Exmple: This exaple illustrates trusted generalized mechanisms to
control and regulate intertask cmmmuications with semaphores.

with MandatoryAccess_Control_TypesPackage; - see 3 - 3.1.3
with MandatoryAccessControlManager Package; -- see 3 - 3.1.3
with AuditTrailManagerPackage; - see 3 - 3.2.3
genric

Max Nuber of Tasks Allowed : in NAMUAL := 1;

package Generic CountingSemaphore MnagerPackage is

task type CountingSemaphore_Tas_ Type is
entry Allow Task to Pass (

Other Task AC Record : in
MandatoryAccessControlTypes Package.

M71 ('D ArM Type N - 1 - I

C-131

APPENDIX C
Collection of Examples

entry ReleaseTask
Other Task MAC Record : in

MandatoryAccess_Control TypesPackage.
MACeordType); - see 3 - 3.1.3

endoutig SaoreTask Type;

erd CGneric_CountirSemaphore_ManagerPackage;

package body Generic_CountingS aphore ManagerPackage is

task bcxy CountingSemaphore_TaskType is

NumberofTasks : INTEGER := MaxNumberofTasksAllowed;

local MAC Record :
Mandatorye . s_Control Types-Package. - see 3 - 3.1.3

MACRecordType;

Other Task MAC Record
MandatorXAccessControl TypesPackage. -- see 3 - 3.1.3

MACRecordType;

bein - Counting SenaphoreTask Type
loop

select
when Number of Tasks > 0 =>
acet AllowTaskto_Pas (

Other Task MAC Record : in
MandatoryAccessControlTypes_Package.

MACRecord_Type) do - see 3 - 3.1.3

if MandatoryAccess_ControlManagerPackage.
Sensitivity labels_Match - see 3 - 3.1.3

(Ica_MACRecord. Sensitivity_label,
OtherTaskMAC Record.

Senitivity label) then

Aidit_Trai_anaaer_ Package. -- see 3 - 3.2.3
LogSubjectsAccess-to Object in Audit Trail (

localMACRecord, OtherTaskMACRecord);

C-132

APPDDIX C
Collection of Exmamples

Number ofTasks := Number of Tasks - 1;
end if;

end AllowTask toPass;

or
whtien NumberofTasks < Max Number_ofTasksAllwed

=> acct Release_Task (
OtherTaskMACRecord : in
Mandatory Tyss t _T7pesackage.
MACRecord 'ype) do - se 3 - 3.1.3.

if Mandatory Access_Control ManagerPackage.
Sensitivity LabelsMatch - see 3 - 3.1.3

(Local MAC Record. SensitivityLabel,
Other Task MAC Record.

Sensitivity Label) then

AuditTrail Managerackage. - see 3 - 3.2.3
LogSubjects AccesstoObject in Audit Trail
localMAC_Rerd, Oter_Task_MAC_Record);

Number of Tasks := Number of Tasks + 1;
end if;

end ReleaseTask;
end select;

end locp;
end CountingSemaphoreTaskType;

end Generic_CcuntingSemaphore ManagerPackage;

2 - 9.12 Exanple of Tasking

Exanple: This exanple illustrates trusted generalized mechanisms to
control and regulate intertask coummnications with mailboxes.

with Mardatory Access_ControlTypesPackage; - see 3 - 3.1.3
generic

Max_ Nmber of Messages : in NATURAL := 24;

C-133

APPENDIX C
Collection of Examples

package Generic_ Mailbox Manager Package is

prooedure Send (Message : in MessageType;
Local MACRecord : in

Mandatory AccssCoitrol, TypesP~ackage.
MAC_Record_ e); - see 3 - 3.1.3

procedur Receive (Message : out MessageType;
Local MAC Record : in

Mandatory AcessControl Types Package.
MAC_Recordy_'lpe); - see 3 - 3.1.3

end GenericMailboxManager Package;

with Mandatory AccessControlManager Package; - see 3 - 3.1.3
with Audit Trail Manager Package; - see 3 - 3.2.3
package body GenericMailbox_ Manager ackage is

task Hanager Task is

enry Deposit (Message : in MessageType;
Other Task MAC Record : in

Mardator AccessControl Types Package.
MAC_RecordType); - see 3 - 3.1.3

entry Remove (Message : oat Message Type;
Ot er Task MAC Record : in

MandatoryAccessControl Types Package.
MAC_RecordType); - see 3 - 3.1.3

end ManagerTask;

procedure Send (Message : in Message Iype;
LocalMAC Pcord : in

Nandatory Access Control Types Package.
MAC Record Type) is -- see 3 - 3.1.3

begin
ManagerTask. Deposit (Message, Local_MACRecord);

end Send;

padr Receive (Message oa. Message Type;
Lcal MAC Record in

Mamiatoxy AccessCtrol TlypesPagce.
MACRecord_Type) is - see 3 - 3.1.3

C-134

APPENDIX C
Collection of Exanples

begin
ManagerTask. Remoe (Message, local MAC Record);

end Receive;

task body Manager Task is

mb tp MailboxSlotIndexType is INTIER range
0 .. (Max_NunberofMessages - 1);

Head Slot : Mailbox Slot IndexType := 0;
Tailslot : ailboxislotIex _pe --- 0;

MessageNumber : fNIM range 0 .. Max Number of Messages;

Mailbox : array (MailboxSlotIndex Type) of Message Type;

LocalMAC Record :
MandatorYAcess_ControlTypesPackage. - see 3 - 3.1.3

MACRecordType;

Other Task MAC Record
MandatoryAccess_Control TypesPackage. - see 3 - 3.1.3

MACRecordType;

bein
loop

select
when Message Number < Max Number of Messages =>

acxept Deposit (Message : in Message Type;
Other Task MAC Record : in

Mandatory AcsControlTypesPackage.
MACRecordType) do

- see 3 - 3.1.3

if Mandatory_AccessControlManagerPackage.
Sensitivity LabelsMatch - see 3 - 3.1.3

(LocalMACRecord. SensitivityLabel,
OtherTask MAC Record.

Senitivity La±Lel) then

AuditTrail ManagerPackage. - see 3 - 3.2.3
Log LubjectsAocesto Object in Audit Trail (

Local MACPR,)rd, Other_TaskMACRecord);

C-135

APPENDIX C
Collection of Examples

Mailbox (Head_Slot) := Message;

HeadSlot := (Head Slot + 1) rood
Max Nuier ofMessages;

MessageNurrer := Mssage Puatr + 1;
end if;

end Deposit;

or
when MessageNumbr > 0 =>

accept Remove (Message : out Message .Type;
Other Task MAC Record : in

Marxdatory AccessControl Types Package.
MACRecord_ Eype) do

- see 3 - 3.1.3

if Mandatory Access_ControlManagerPackage.
Sensitivity Labels Match - see 3 - 3.1.3

(LocalMAC Record. Sensitivity Labe-l,
Other Task MAC Record.

Senitivity Label) then

AuditTrailManager_Package. - see 3 - 3.2.3
Log_SubjectsAccess to Object in Audit Trail (

LocalMACRecord, other_Task_ CRecord);

Message := Mailbox (HeadSlot);

TailSlot := (TailSlot + 1) red
MaxNumber of Messages;

Message Number := MessageNumber - 1;
end if;

end Remove;
end select;

end loop;
end Manager_Task;

end Generic_Mailbox Manager Package;

C-136

APPFDIX C
Collection of Examples

2 -1U. Exetio

Exauple: This example illustrates trusted exception handling that allows
program execution tc; continue in a trusted manner.

gnric

type NameType is private;
type ACLRecordType is private;

package Generic_AccessControlListManager Package is

proo3ur GetACLRecord
Name : in NameType;
ACLRecord : oat ACLRecordType);

procedure Insert ACL Record
(ACL Record :-in ACL_RecordType);

procedure DeleteACLRecord
Name : in NameType);

Overflcw AccessControlList : exception;
AccessControl List is Null : exception;

private

end GenericAccessControlList Manager Package;

with AccessControlListlypes Package;
-~A-0 -S. --~.- - -- -IwiLth ,m-aLory AccesContl 'ly-esPackage; -- see 3 - 3.1.3

with Mandatory _Acess_ControlManager_Package; - see 3 - 3.1.3
with Audit Trail ManagerPachage; - see 3 - 3.2.3
package body GenericAccessControlList Manager_Package is

C-137

APPENDIX C
Collection of Examples

- The user can gain only indirect access to instantiated
- access control list through the subprograms declared in the
- package specification. Thus the access control list data
- structure is hidden from the user of this package. The
- typical list manipulation operations (e.g., as illustrated
- by Boodh 1987A and Feldman 1985) are only provided in the

- package body.

ExceptionRaiser Record:
Mandatory A x ssCxtrol Tpes Package. -see 3 - 3.1.3

MACRecordType; - Initialize ExceptionRaiserRecord.

Exception Handler Record :
MandatoryccesControl_ Types Package. - see 3 - 3.1.3

MACRecordType; - Initialize ExceptionHandlerRecord.

- ypical list manipulation operations

proA ure Get ACL Record
Name : in Name Type;
ACLRecord : out ACLRecordType) is

Exception Name
MandatoryAccessControl_TypesPackage. - see 3 - 3.1.3

ExceptionName Type
b:lndatoryAccessControl TypesPackage.

Others Strinr;

b -in- Get_AL_ Record

- Sequence through the access control list data structure
- using the typical list manipulation operations to locate
- and get the indicated access control list record.

C-138

APPENDIX C
Collection of Examples

excetion

when others =>
AuditTrail ManagerPackage. see 3 - 3.2.3

LogException in AuditTrail
ExceptionName,
ExceptionRaiser_Record,
Exception Handler_Record);

end GetACLRecord;

procedure Insert ACL Record
(ACL Record : in ACLRerordType) is

Exception Name
MandatoryAccess_Control _T'pesPackage. - see 3 - 3.1.3

ExceptionName_ Type :=
Mandatory Access_ControlTypesPackage.

othersString;

bin-- Insert ACL _Record

- Sequence through the access control list data structure
- using the typical list manipulation operations to locate
- the appropriate place to insert the indicated
- access control list record. This location is
- determined by a predefined mechanisn, e.g., alphabitizing by
- the "name" of the access control list record, or more
-- crudely by a simle (FIBO) stack or (FILO) queue.

- heck for the exception Overflow AccessControlList.

- If the exception is to be raised, then set the

C-139

APPENDIX C
Collection of Exarples

- Exception N&,e and Exception RaiserRecord.

erticri

when Overflow Acess Control List =>
AuditTrail Manager Package. see 3 - 3.2.3

logException in AuditTrail (
ExceptionLName,
Exception Raiser Record,
ExceptionHandlerRecord);

when others =>
Audit TrailManager Package. see 3 - 3.2.3

loaException in AuditTrail
Exception Name,
Exception RaiserRecord,
ExceptionHandlerRecord);

end InsertACLRecord;

prccedUre DeleteACLRecord (Name : in Name_ Type) is

ExceptionName
MandatoryAccess_ControlTypes_Package. -- see 3 - 3.1.3

ExceptionNameType :=
Mandatory AccessControl TypsPcae

Others String;

begin - DeleteACL Record

- Sequence through the access control list data stru-ture
- using the typical list manipulation operations to
- locate, scrub, and delete the indicated

C-140

APPENDIX C
Collection of Exanples

-- access control list record.

- Check for the exception Access Control List is Wll.
- If the exception is to be mised, then set the
- ExceptionName and ExceptionRaiserRecord.

ewqtin

when Access Control List is Null =>
AuditTrail M-anagerPackage. see 3 - 3.2.3

IgException in AuditTrail (
ExceptionName,
Exception Raiser_Record,
ExceptionHandler_Record);

when others =>
AuditTrail Manager Package. see 3 - 3.2.3

Ing Exception in AuditTrail (
ExceptionName,
Exception RaiserRecord,
Exception HandlerRecord);

end DeleteACLRecord;

end GenericAccessControlList ManagerPackage;

2 - 12.4 Exaople of a Generic Package

Example: This example illustrates a generic package for multiple instances
of an access control list, with instantiations of the package.

generic

C-141

APPEDIX C
Collection of Examles

type Name__Type is private;
type ACLRecordType is private;

package GenericAccessControlListManager Package is

prKoedure Get ACL Record
(Name : in Name Type;

ACLRecord : out ACLRecordType);

procedure InsertACLRecord
(ACL Record : in ACLRecordType);

procre DeleteACLRecord
(Name : in Name Type);

Overflow AccessControlList : exrtion;
AccessControl-List is Null : exoetica;

private

end GenericAccessControlListManagerPackage;

with AccessControlList TypesPackage;
with Madato-y_Ar-cessControlTypes Package; - see 3 - 3.1.3
with MandatoryAccessControl ManagerPackage; - see 3 - 3.1.3
with Audit TrailManagerPackage; - see 3 - 3.2.3
package body Generic_Access_Control_List ManagerPackage is

- The user can gain only indirect access to instamtiated
- access control list through the subprograms declared in the
- package specification. Tnus the access control L t at

- structure is hidden fran the user of this package. The
- typical list manipulation operations (e.g., as illutrated
- by Booch 1987A and Feldman 1985) are only provided in the
- package body.

C-142

APPENDIX C
Collection of Exmples

- Typical list manipulation cperations

c re GetACLRecord
Name : in Name_Type;
ACLRecord : out ACL RecordType) is

begin - et_ACL_Record

- Sequence through the access control list data structure
- using the typical list maiipulation operations to locate
- and get the idiicated access control list record.

end GetACLRecord;

procedure InsertACLRecord
(ACLRecord : in ACL_Record Type) is

begin -- InsertACLRecord

- Sequence through the access control list data structure
- using the typical list manipulation operations to locate
- the appropriate place to insert the indicated
- access control list record. This location is
- determined by a predefined mechanism, e.g., alphabitizing by
- the "name" of the access control list record, or more
- crudely by a sinple (FIFO) stack or (FILO) queue.

end InsertACLRecord;

C-143

APP NDIX C
Collection cf Exazples

procedure DeleteACLRecord (Name : in NameType) is

begin - DeleteACLRecord

- Sequence through the acss control list data structure
- using the typical list manipulation operations to
- locate, scrub, and delete the indicated
- access control list record.

end Delete_ACL_Record;

end GenericAccessControl_List ManagerPackage;

- Instantiations of Generic Access Control List Manager_Package
package NamedObjectsAccess-_ControlListManager Package is ne

GenericAccessControlList Manager Package
(NameType => Basic_TCB_Types Package.

Name of ObjectType,
ACLRecordType => AccessControlListTypes_Package.

NamedObject RecordType);

package Named_:IndividualsAccess_ControlList ManagerPackage is nv
Generic_AccessControl List ManagerPackage

(NameType => Basic_ TCB TypesPackage.
Name of ObjectrType,

ACLRecord Type => AccessControl_ListTypmsPackage.
Named IndividualRecordType);

C-144

APPENDIX C
Collection of Eamples

package Groups_of_Named Individuals ACL Manager Package is rnw
Generic Access_Control ListManager Package

(NaeType => BasicTcB TypesPackage.
Namie of ject Type,

ACLRecordType => Acess _Ootrol_ List TypesPackage.
Groupof _Named_IndividualsRecordType);

2 -13.5.1 Interrupts

Example: This example illustrates truste interrupt handling.
Note that address clauses are not currently supported in VAX Ada.

with MandatoryAccess_Control Types Package; - see 3 - 3.1.3
package InterruptHandler_Package is

proceure GetCharacter (Char : out CHARACTY.R;
local MAC Record : in

Mandatory AcoessControl Types Package.
MAC_Re dType); - see 3 - 3.1.3

procedure Put_Character (Char : in CHARACTER;
Lccal XAC Record : in

MandatoryAccessControl TypesPackage.
MAC Record Type); - see 3 - 3.1.3

end Interrupt HandlerPackage;

with MandatoryAccess_Control Manager Package; - see 3 - 3. 1.3
with Audit Trail ManagerPackage - see 3 - 3.2.3
package body Interrupt_Handler_Packaqe is

task InterruptInput-HardlerTask is

pragma PRIORITY (4);
- must have at least the priority of the interrupt

entry Get_C aracterfrom Inte t _I=t Address
(Char : out CHARACIT;

Other Task MAC Record : in
Mandatory Aocess_Control 2TpesPackage.

MAC Record_Type) ; -- see- 3 - 3.13

C-145

APPENDIX C
Collection of Exapls

entry Save Hardware Buffer Character (
Other TaskMAC Record : in

Mandatoryccsotl 'Types Package.
MAC_ReoordType); - sce 3 - 3.1.3

- assumig that SYSTEM. ADDESS is an INTEER type
for Save HardwareBuffer Character use at 16#0020#;

enda Interrupt IrputHandler Task;

task InterMpt_ PtPutjHnler Task is

pragma PRIORITY (4);
- must have at least the priority of the interrupt

entry Deposit Character intoHardwareBuffer (
OtherTask MAC Record : in
Mandatory Ac_ sControl TypesPackage.
MACRecord Tye); - see 3 - 3.1.3

entry Put_ CaracterintoInterrupt Output Address
Char : in CARACTER;
Other Task MAC Record : in
MandatoryAccess_Control TypesPackage.

MACRecord Type); - see 3 - 3.1.3

- assuming that SYSTEM. ADDRESS is an INTEGER type
for DepositCharacterintoHardwareBuffer use at 16#00244;

end Interrupt Output Handler_Task;

procoeure Get_Caracter (Char out CHARACTER;
LocalMAC Record : in
Mandato y AccessControl Types-Package.

MACRecord lype) is

- see 3 - 3.1.3
bg i - Get_ caracter

interrupt Input .,lianlerTask.
Get_ Caracter _frarIntrept Input de

(Char, local MAC_Record);

end Get Character;

C-146

AP'NIX c
Collection cf - aiole-

procedure PutCliaracter (Char : in CX chE;
Local MAC Record : in

Mandatory AccessControl, Iypes-Package.
- see 3 - 3.1.3

bein - Put Character

Inter _ _mOutpuHandle Task.
Put Lliaracter into Interrpt Output -Address,

(aar, Local_MAC_Rerd);

exi 'RtCaracter;

task body InterruptInput_ Hanler_Task is

MaxSizeofInternalInputBuffer : onstant POSITIVE
:= 64;

Internal Iruxt Buffer :
array (1 .. MaxSizeofInternalInptBuffer)

of CHARACTER;

Input-BufferPointer : POSITIVE := 1;
OutputBufferPointer : POSITIVE := 1;

Buffer Count : INTEGER := 1;

HardwareCharacter Buffer : CHARACTER;
for Hardware Character Buffer use at 16#0100#;

Local input Task MAC Record :
Mandatory-Access_ControlTypesPackage. -- see 3 - 3.1.3

MACRecordType;

Other Task MAC Record
ManatoryAccess_ControlTypesPackage. - see 3 - 3.1.3

MACRecord_ Ty;

b-in - Interrupt InputHandler_Task
loop

select
wen Buffer Count > 0 =>

C-147

APPNDIX C
Collection of E>amples

accept Get_Charactr_frcmInterrupt Input_Address
(Char : cut CARACTER;

Other Task MC Record : in
Mandatory Ass control_ Typesackage~.C_RecodE 'e) ik,

-- 3ee 3 - 3.1.3

if MandatoryAcess_ControlManager Package.
Sensitivity Labels Match - see 3 - 3.1.3

,Lal Irpxt Task3 _MCRe ord.
Sensitivity_label,

other Task MAC Record.
SensitivityLabel) then

Auxit T il Manager Package. - see 3 - 3.2.3
LogSubjects Access to Object in AuditTrail(

Local_Input TaskMACRecord,
Other TaskMACRecord) ;

Char := intenal InputBuffer(
Output pfferPointer)

Outpit_uffer Pointer
Output uffer Pointer mo~d

Max Sizeof nternalInput_Buffer + 1;

Buffer Count := Buffer Count - 1;
end if;

end GetCharacterfrom_Interrupt Input Address;

or
when Buffer Count <

Max_Size ofInternal Input Buffer =>

accept Save Hardware Buffer Character (
Other Task MAC Record : in

Mandatory .esControl_ TypesPackage.
MACRecord_Type) o - see 3 - 3.1.3

if Mandatory Access_ControlManagerPackage.
Sensitivity _abelsMatch -- see 3 - 3.1.3

Sensitivitylb,
Other Task MAC Record.

Sensitivity label) then

C-148

7.PPMhDIX C
Collection of Examples

AuditTrail_ManagerPackage. -- see 3 - 3.2.3
LogSubjects Access to Objectin Audit Trail

Lal),Input 7AskMCRecord,
OtherTakMAC_Record)

Interna1_lputBuffer(

Hardware_CiaracterEuf fer;

pit_Bffer Pointer :=-
Inut_ifer Pointer nod

Max Size ofInternal Input Buffer + 1;

Buffer Count := Buffer Count + 1;
erd if;

end SveS Hardware Buffer_Caracter;
end select;

end loc,;
erd 1Interrupt _IrkputHrlrTask;

task body Interrupt _Outpt andlerTask is

MaxSizeofInternal_OutputBuffer : carstant POSITIVE
:= 64;

Internal-OutputBuffer
array (1 .. MaxSize ofInternalOutputBuffer)

of CHARACII2;

Input BufferPointer : POSITIVE := 1;
OutputBuffer Pointer : POSITIVE := 1:

BufferCount : fII R := 1;

Hardware Character Buffer : CHARAC;ER;
for Hardware CharacterBuffer use at 16#0200#;

Hardware_CharacterBuffer is Eqpty : BOLEAN := TJE;

Local_Output TaskMACRecord
~ ~see 3 -3.1.3

MACRecordTpe;

C-149

M PENDIX C
Collection of Examples

Other Task MAC Record
Marndatory_ AcsControl Types Package. see 3 - 3.1.3

MACRecordTvpe;

b -in - Internpt utput H er Task
loop

select
accet Deposit Character into HardwareBuffer (

Other Task MAC Record : in
Mandatory Access _Control Ts Package.
MAC_Re ordTpe) do - see 3 - 3.1.3

if Mand atory AS Control_Manager Package.
Sensitivity LaelIs_Matdh - see 3 - 3.1.3

(ocal Output TaskMACRecord.
SensitivityLabel,

Other Task MAC Record.
Sensitivity--abel) then

Audit TrailManagerPackage. - ee 3 - 3.2.3
LogSubjectsAccess to Object in Audit Trail (

localOutput TskMACRecord,
OtherTask_MAC_Record);

if Buffer Count > 0 then

Hardware Character Buffer :=
Internal Output Buffer (

Ou:ut_BufferPointer);

OutputBuffer Pointer :=
Output_BufferPointer mod

MaxSize ofInternalOutput_Buffer + 1;

Buffer Count := Buffer Count - 1;

else

HardwareCharacterBufferisEmpty := TRUE;
end if;
dif;

end Deposit CharacterintoHaidwareBuffer;

or

C-150

ADPPNDIX C
Collection of Eamaples

when Buffer Count <
Max_Size_of_Internal Output_Buffer =>

acxet PutCharacter into Interot OutputAdldress
(Char : in RACTER;

Other Task MAC _acord : in
Mandatory Acoess_Control_TypesPackage.

MACRecord Type) do - see 3 - 3.1.3

if Mandatory AccessControlManagerPackage.
Sensitivity _abels Match - see 3 - 3.1.3

(~l,.utput9 sk IMAC Pemrd.
Sensitivity_Lab,

Other Task MAC Record.
Sensitivity-abel) then

AuditTrail Manager Package. - see 3 - 3.2.3
LogSubjects_Access to Object in AuditTrail(

LocalOutput TaskMACRecord,
OtherTask_MAC_Record);

Internal_Output Buffer(
InputBuffer-Pointer) :C= har;

Inlt_ uffer Pointer :=
Input puffer Pointer moxd

MaxSizeofInternal_OutputBuffer + 1;

Buffer Count := Buffer Count + 1;

if HardareCharacterBuffer is Empty then

Hardware Character Buffer =
Interil Output_ Buf fer (

Output_BufferPointer);

OutputBuffer Pointer :=
Output pufferPointer mod

MaxSize_of_Internal_Output Buffer + i;

Buffer Count :=-Buffer Count - 1;

HardwareCharacterBufferisEmpty := TRUE;
end if;

end if;
end Put_ CaracterintoInterrupt Output Address;

C-151

APPEYIX C
Collection of E:xaples

end select;
end loop;

end Interrupt _O ~utt andler_Task;

endl Interrupt Hiandler Package;

2 - 13.9 Interface to Other Lanmkaes

Example This example illustrates the interface of Ada with Pascal.

package GraphicsCLibrary ackage is
prcce:sre Draw Circle

(Center : in Coordinates Sy~pe;
Radius : in Distance Type);

private
pragma INIERFACE (PASCAL, DrawCircle);

end GraphicsLibrary Package;

2 - 14.7 Example of Input-Otr

Exacmle: This example illustrates trusted input and output.

with TEXT_IO;
with MandatoryAccessControl TypesPackage; -- see 3 - 3.1.3
with AccessControl_ListTypesPackage;
generic

MaxCharactersin Message : POSITIVE := 80;

package GenericSensitiveTextFileManagerPackage is

Sensitive Text File : TEXT I. FILETYPE;
subtype Message_Type is STRING(1 .. MaxCharacters-in Message,;

C-152

APPENDIX C
Collection of Examples

procedure Put Line
Subject MACRecord :in

MandatoryAccess_Control_ Types ackage.
MACRecord Type;

Named_0bject MAC Record : in
Mandatory 3ooessControl, Types Package.

MACRecordType;

. Message. : in Message Type);

end GenericSensitiveTextFile Manager Package;

with Mandatory Access_Control Manager Package; - see 3 - 3.1.3
with Audit TrailManagerPackage; - see 3 - 3.2.3
package GenericSensitiveText FileManagerPackage is

procedure PutLine (
SubjectMAC_Record : in

MandatoryAccess_ControlTypesPackage.
FACRecordType;

NamedObject MACRecord : in
Mandatory Access_ControlTypes Package.

MACRecord_Type;

Message : in MessageType) is

begin - Put_Lin

if MandatoryAccess_ControlManager Package.
Sensitivity LabelsMatch - see 3 - 3.1.3

(Subject_MAC_Record. Sensitivitylabel,
NamedObject MACRecord. Sensitivity label) then

Audit_TrailManagerPackage. - see 3 - 3.2.3
LogSubjectsAccess to Object in Audit Trail (

Subject MACRecord, Named Object MACRecord);

C-153

APPENDD: C
Collection of Eyx mples

TEXT_IO. PUT_LINE (SensitiveTextFile, Message);

end if;
endl Put idne;

end Generic_ SensitiveTextFile Manager Package;

C-154

APPENDIX C
Collection of Examles

3. 1.1 Discretionary Access Control

EampJle: This example illustrates a generic package specification for
multiple instances of user identification and authentication
(The package body is in Section 3 - 3.2.1.)

with MandatoryAccess_ControlTypesPackage; - see 3 - 3.1.3
with GenericAccessControlList Manager_Package;
generic

type Password Type is private;

package GenericUserIdentification andAuthentication Package is

procxre Check Password
(Password : in Password Ty;

Local MAC Record : in
MandatoryAccessControlTypes_Package. -- see 3 - 3.1.3

MACRecord Tvpe;

Passwordis_Valid : out BOOLEAN);

end GenericUserIdentificationandAuthenticationPackage;

3.1.3 Labels

Example: Sensitivity label type declaration

with Basic_TCBTypes Package;
package MandatoryAccess_Control TypesPackage is

subtype Narme of ResourceType is
BasicTCBTypesPackage. Nam Strin Type;

C-155

APPENDIX C
Collection of Eaxrles.

subtyp SensitivityLabel_Type is
BasicTCBTypes,_Package. Nametring Type;

scrubbed Sensitivity _Label : sensitivity ablType
:BasicTCB Types Package. BlankNam. Strng

sdbtype Exception Name Type is
Basic_'TCBTypesPackage. Name String Type;

ScrubbedException Name : Exceptioq NamieLType 4
= BsicTUBTypes Package. BlankNameString;

Others_String : BasicTCBTypes Package. Nam-tigTp
:BasicTCB Types Package. BlankNameStri;

type MAC RecordLType is
reoorc

Name : Name ofResourceType
=BasicTCBTypes Packae. BlankName,_String; g ee 2 -3.2.1

Sensitivity _label : Sensitivity Label Type
:ScrubbedSensitivity.Labl;

endi record;

end~ MandatozyccessControlTypes Package;

with Basic_TUB Types Package;
with mandatory AcocessControl .Types Pakage;
package MadatoryAcessControl, Manager_Package is

f-anKticr SensitivityLabelsMatch
(Sensitivity _LabelA : in

Mandatory ccessControl Types Package.
Seblirp"='

Sensitivity LabelB : in
Mandatory ccessControl TypsPcae

SensitivityLabelType) pscae

C-156

APPENDIX C
Collection of Eamples

return BOOLEAN;

endi Maxlatory AcessCtntrol_ Manager package;

3.2.1 Identification and Authenticatin

Eamiple: This exanple illustrates a generic package body for multiple
instances of user identification and authentication. (The
package specification is in Section 3 - 3.1.1.)

with Access Control_ List TypesPackage;
with Audit Trail ManagerPackage; - see 3 - 3.2.3
package body GenericUserIdentificationandAuthenticationPackage is

x-1o me Checkc Password
Password : in PasswordTye

Local MAC Record : in
Mandatory Access_Control_TYpesPackage. - see 3 - 3.1.3

IaCRecord-Type;

Password-is Valid : out BOOLEAN) is

begin - heck_ Password

end CheckPassword;

end GenericUser IdentificationandAuthentication Package;

C-157

APPENDIX C
Collection of Exarpaes

3.2.3 Audit

Ex0ple: Audit trail manager package

with TEXT 10;
with Mandatory AccessControlTypesackage; - ee 3 - 3.1.3
pxackW Audit Trail.Manager Package is

Audit Trail Text File : [TI 10. FILETYPE;

procedur Iog Subjects_Acess to Obj ectinAuditTrail (
Subject MACRecord : in

MandatoryAccess_Control Types Package. - see 3 - 3.1.3
MACRecord Type;

NamedObjectMAC_Record : in
Mandatory Access ntrol. Types Package. - see 3 - 3.1.3

MAC_RecordType);

prLure Iog ExceptioninAuditTrail (
ExceptionName : in

MandatoryAccessControl Types Package. - see 3 - 3.1.3
Exception_NameType;

ExceptionRaiserRecord :in
MandatoryAccess_Control TypesPackage. - see 3 - 3.1:3

MACRecord TYPe;

Exception HandlerRecord : in
Mandatory AccessControl TypesPackage. - see 3 - 3.1.3

MACRecord Type)

end Audit Trail Manacer Packacge;

C-158

APPENDIX C
Collection of Exaip]es

with MandatoryAccessControlManager Package;
package body AuditTrailManagerackage

pokeLog SubjectsAccess to Object in Audit Trail (
Subject_MACRecord : in

MandatoryAcess_Control TypesPackage. - see 3 - 3.1.3
MAC_Record_Type;

Namd Object MACRecord : in
MardatoryAccess _ontrol TYpes Pakage. - see 3 - 3.1.3

MAC_Record_Type) is

begin - Log SubjectsAccessto Object in Audit Trail

TEXT I. iUTLINE (Audit TrailText File,
"Subject " & SubjectMACRecord. Name);

TEXT_10. PUTLINE (Audit TrailTextFile,
is not authorized to access " &

Name Object_MACRecord. Name);

end Log Subjects Access_toObject in AuditTrail;

procedure LogException inAuditTrail (
ExceptionName: in

MandatoryAccess_ControlTypesPackage. -- see 3 - 3.1.3
ExceptionNameType;

ExceptionRaiser Record : in
Mandatory Access_Control TypesPackage. - see 3 - 3.1.3

MACRecordTYpe;

ExceptionHandler Record : in
MandatoryAccessControl_.TypesPackage. - see 3 - 3.1.3

MACRecord_Type) is

C-159

APPENDIX C
Collection of Exanples

begin -Log Exceptior in LA~diit_ Trail

if Mandatory_AooessControlManager Package.
Sensitivity Labels_Match - see 3 - 3.1.3

Exception Handler Record.
SensitivityLabel,

ExceptionRaiser Record.
Sensitivity Iabel) thn

TEXT1. YTLINE (Audit Trail Text File,
"Subprogram " &
Exception Handler Record. Name &
" handled the exception, ");

TEXT 10. PUT LINE (Audit Trail Text File, " ", &
ExceptionName & " raised by" &
ExFeptionRaiser_Record. Nae;

else

TEXT 10. PUT LINE (Audit Trail Text-File,
"Subprogram " &
ExceptionHandler Record. Name &

is not authorized to handle the exception, "

TET_10. PUTLINE (Audit Trail Text-File, " ", &
ExceptionName & " raised by " &
ExceptionRaiserRecord. Name);

end if;

end Log Exception in Audit Trail;

begin - AuditTrail Manager_Package initialization

MandatoryAccessControl_TypesPackage. - ,ee 3 - 3.1.3

Others String(1 .. 6) := "others";

end Audit Trail ManagerPackage;

C-160

APPENDIX C
Bibliography

6.0 B3LIBGRAM

Abrams, Mar all D., Podell, Harold J., 1987. XQitp and Network
. Washington, D. C.: IEEE Caqpwter Science Press.

Abrams, Mirshall D, Podell, Harold Jo, 1988. alg DIvelMnt in Network
Serj. 2906 Covington Road, Silver Spring, MD, 20910.: Ompiter Educators Inc.

Anderson, Eric R. "Ada's Suitability for Trusted COmpter System" from
* Proceed'is of the S simi on Security ad P a , Oakland, California, 22-24
April, 1985.

Baker, T. P. 13 July 1988. Issues Involved in Developing Real-Tie Ada Syste s.
Department of Cmpater Science, Florida State University, Tallahasse, FL: for U.
S. Army HQ, O(WADP.

Boebert, W. E., Rain, R. Y., and Young, W. D., July 1985. "Secure Computing: The
Secure Ada Target Approach." Scientific Honeeljer, Vol. 6, No. 2.

Booch, Grady. 1987A. Sotwre Cmonents with Ada. Menlo Park, CA: The
Benjawn/T~ing Pub~lishing Cmxpany, Inc.

Booch, Grady. 1987B. Softwore 'ineerin. with Ada. 2nd ed. Menlo Park, CA: The
Benjamin/Cuimmigs Pibi.hirg Ccwany, Inc.

Brill, A.lan E., 1983. 6uildi - Controls Into Structured S stems. New York, N.
Y.: YOR=N Press Lnc.

Wahr, R. J. A., 1984. Svs jig.. with Ada. Englewood Cliffs, N. J.: Prentice-
Hall.

Cherry, George W., 1984. Parallel _Prooammim in ANSI Standard Ada. Reston,
Virginia: Reston Publishig Comany, Inc.

Feldman, Michael B. 1985. Data Structures with Ada. Reston, Virginia: Reston
Publishing Company, nc.

Fnli Evaluatin Report of SC 23 September 1985. Secure Communications
Processor STOP Release 2.1.

Freeman, Peter. 1987. Tutorial: Software Reusability. Washington, D. C.: IEEE
Computer Science Press.

Gasser, Morrie 1988. Building a Secure Cmiter System. New York, N. Y.: Van
Nostrand Reinhold Comipany, Inc.

C-161

APPEDIX C
Bibliography

Gehani, Narain. 1984. Ada Concurrent Pro i. Englewood Cliffs, N. J.:
Prentice-Hall Inc.

Gilpin, Geoff. 1986. Ada: A Guided Tour and Tutorial. New York, N. Y.: Prentice
Hall Press.

Goodenough, John B., "Ecception Handling: Issues and a Proposed Notation,"
Communications of the ACM, 18(12):683-696, Deoember 1975.

Hadley, Sara, Hellwig, Frank G. of the National Seairity Agency, and Rowe,
Kenneth, CM Vaurio, David of the National Computer Security Center. 1988. "A
Secure SDS Software Library," ProceedU=s. 11th National CQmM=ter Security
Cone , Baltimore, MD, October 17-20, 1987, National Institute of Standards
and Technology/ational Cmpiter Security Center.

IEEE Standard Glossary of Software EnineerinM Terminolgy. 18 February 1983.
(IEEE Std 729-1983).

Lucdam, David C., von Henke, Friendrich W., Krieg-Brueckner, Bernd, Owe, Olaf,
"ANNA-A language for Annotating Ada Programs, Preliminary Reference Manual,"
Technical Report No. 84-261, Program Analysis and Verification Group, Computer
Systems Laboratory, Stanford University, Stanford, CA 94305, July 1984.

Mungle, Jerry. 1988. Developing Ada Systems. Technology Training Corporation's
seminar.

National Conputer Security Center. 1985. Department of Defense Trusted Ccruter
System Evaluation Criteria. (DOD 5200.28-STD)

National Computer Security Center. 1987. Trusted Network Interpretation of the
Trusted Computer System Evaluation Criteria.

Nissen, John and Wallis, Peter. 1984. Portability and Style in Ada. Cambridge,
Great Britain: Cambridge University Press.

Odyssey Research Associates, Inc., Toward Ada Verification, Preliminary Report"
(Revised Preliiniary Report), Odyssey Research Associates, Inc., 301A Harpis B
Dates Drive, Ithaca, NY 14850-1313, March 25, 1985.

Reference Manual for the Ada EmM irxs Language. 1983. ANSI/MIL-STD-1815A-1983,
17 February 1983.

Ross, D. T., Goodenough, J. B., and Irvine, C. A., 1975. "Software Engineering:
Process, Principles, and Goals," C

C-162

APPENDIX C
Bibliography

Saydjari, 0. S., Beckman, J. M., and Leaman, J. R. 1987. "LOCKing Computers
Securely," Proceedinas. 10th National OmJter Security Conferenge, Baltinore,
MD, September 21-24, 1987, National Bureau of Standards/National Omputer
Security Center.

Shaffer, Mark of HC.W , 00Ccw Technology Center, and Walsh, Geoff of R &
D Associates Secure. 1988. "LOCK/ix: On ImplEmenting Unix on the LOCK TCB,"
Proceedings. 11th National Computer Security Conference, Baltimore, MD, October
17-20, 1987, National Institute of Standards and Technology/National Computer
Security Center.

Tracz, Will. 1988. Tutorial: Software ReUse: EMreinr Technoloaz. Washimton, D.
C.: IEEE Computer Science Press.

Tripathi, Anand R., Young, William D., Good, Dnald I., "A Preliminary Evaluation
of Verifiability in Ada," Proceedinms of the ACM National Conference, Nashville,
TN, Oc-tober 1980.

Trusted Cmwter System Security Requirements Guide for DoD Axlications. 1
September 1987.

C-163

APPENDIX D

Abstracts of Three
Frequently Referenced

Documents

Prepared for:

National Cmpiter Security Center
9800 Savage Road

Fort Meade, MD 10755

Prepared by:

Ada Applications and
Software Technology Group

IIT Research Institute
4600 Forbes Boulevard

I.anham, MD 20706

D-1

D-2

APPENDIX D
Abstracts of Three Frequently Referenced Documents

This appendix contains an abstract for each of three documents referenced by this
report concerning the LOCK hardware technology. Where available, the abstract
was taken directly fram the referenced document; in other instances, an abstract
was either written for a document or the existing abstract was expanded.

D-3

APPENDIX D
Abstracts of Three Frequently Referenced Documents

SECURE COMPJIG: THE SECURE ADA TAET APPROACH

The paper proposes to secure ccouting with a small trustworthy hardware
subsystem of a cotputer that is not subject to the potential penetrations
inherent in software. This hardware subsystem "enforces strict rules that
protect data from hostile users. 7he subsystem can be proved trustworthy in a
more rigorous sense than can earlier medmnisms." This subsystem functions as
the reference-monitor mechanism, or security kernel. Overall, this subsystem
"consists of three state spaces, or collections of three state spaces, or
collections of stored information. The state spaces are called the value state,
the protection state and the underlying abstractions. The value state consists
of all objects that can possibly be made visible to subjects; it is therefore
outside the referex monitor. The protection state and the underlying
abstractions are the information that the reference monitor keeps internal to
itself and uses in making access decisions. At this level the protection state
is represented as a matrix and the underlying abstractions are represented as
tables. The paper introduces "the concept of an operation invoked by a subject
and performed by the reference monitor. This operation consults the underlying
abstractions and updates the protection state accordingly. The paper further
details the design and operation of this hardware reference monitor as applied to
creating a tanper resistant Ada target.

D-4

APPENDIX D
Abstracts of Tnree Frequently Referenced Documents

LOCKING COMPtrERS SECJRELY

Progress has been slow over the last 15 years in the relatively new field of
computer security. Every initiative started from scratch to develop a s- ure
ccmruter. First prototypes, built in software, were slow and difficult to use.
I=OC is a tednimlogy research and develcpwnt project to build a hardware-based
Reference Moitor module. This mcdule will be generic and thus reusable on many
differn.t coputers. FiL advantage will be taken of inexpensive generic
c _ ptor- hic modules currently in development.

D-5

APPENDIX D
Abstracts of Three Frequently Referenced Documents

LOCK/ix: On Implementing Unix on the LOCK TCB

In the CICK/ix version, the IOgical Coprocessing Kernel (0CK) is a Trusted
Coaputing Base (TCB) that is designed to meet and exceed the requirements for a
Class Al secure system. This paper describes the results of a study that
determined how to port the Unix System V Operating System to the LOCK TCB, whilenaintaini . maximum cumpatibility with th. System V Interface Definition (SVID)
[SVID86].

D-6

APPENDIX D
Bibliography

BIBLIORAPHY

Boebert, W. E., Kain, R. Y., and Young, W.D. July 1985. "Secure Computing: The
Secure Ada Target Approach." Scientific Honewelle, Vol. 6, No. 2.

Saydjari, .. S., Beckman, J. M., and Leinean, J. R. 1987. "IDCing CcAxtes
Securely," Proceedings. 10th National Oamuter Security Conrence, Baltimore,
MD, Septeaber 21-24, 1987, National Bureau of Standards/National Caputer
Security Center.

Shaffer, Mark of Honeywell, Computing Technology Center, and Walsh, Geoff of R &
D Associates Secure. 1988. "ILOCK/ix: On Implementing Unix on the LOCK TCB,"
Prooeedins. 11th National QCgMc ter Security Conference, Baltimore, MD, October
17-20, 1987, National Institute of Standards and Technology/National COmputer
Security Center.

D-7

